
is 100 balls $\longrightarrow 99$ balls (10gms) each. $\longrightarrow 1$ ball (9 gus) faulty.
What is minimum no. of weightings required on a beam balance so as to find the faulty ball?
Sol
$B \cdot B \longrightarrow 3^{n}$

$$
10-(27)^{3^{3} \longrightarrow 3}
$$

$$
28
$$

82

$r \frac{100 \text { Balls }}{1} \longrightarrow 99$ balls (10 gms) each
1 ball (9 gmo) faulty
$\frac{\text { Mink. no. of weightage req. on a spring Balance. }}{1}$.
Sol \longrightarrow always to ensure
$\left.\right|_{\text {asher }}{\text { Spring Balance } 2^{n} \Omega}$ an answer keeping for
 $1-(2)^{2} \longrightarrow 1$
$3-(4)^{2} \longrightarrow 2$
$5-(8)^{3} \longrightarrow 3$
$09-16 \longrightarrow 4$
$17-32 \longrightarrow 5$
$33-64 \longrightarrow 6$
$65-\underset{27}{(28)} \rightarrow 7$

$$
\begin{aligned}
& \operatorname{Min}(\text { pair }) \rightarrow 3 . \\
& \operatorname{Min}(\text { Blue pair) } \rightarrow 14 .
\end{aligned}
$$

r Digital Balance \rightarrow spring Balance.

CHAPTER 1
Number System
(1) Factors:- factors are the set of no.'s which will divide a given no. completely.
\qquad Factors \longleftrightarrow Divisors.
examiner demotion.
$8\left\{\begin{array}{l}\frac{2}{3} 9 \\ \frac{3}{3} \\ 11.72 \\ 1.72 \\ 3\end{array} 2^{3}=4 \times 3\right.$ factors

$$
\begin{aligned}
& \text { S } 1,2,3,4,6,8,9,12,18,24,36,72 \\
& \text { - } 120=2^{(3)} \times 3^{1} \times 5^{1}=\frac{4 \times 2 \times 2}{=16 \text { factors }} \\
& 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120
\end{aligned}
$$

Note :-

$$
\begin{aligned}
& N=a^{p} \times b^{q} \times c^{r} \\
& \text { Total factor }=(p+1)(q+1)(r+1)
\end{aligned}
$$

where a, b, c are distinct prime no's and
3 p, q and r are natural no's.

$$
\begin{aligned}
& \left\lvert\, \begin{array}{ll}
\\
2^{\circ} & 30(1) \\
\rightrightarrows & 31(3) \\
\longrightarrow & 3^{2}(9)
\end{array}\right. \\
& 2^{\prime} \rightarrow 3^{\circ}(2) \\
& \begin{array}{l}
\overrightarrow{31}(18) \\
3^{2}(18)
\end{array} \\
& \begin{array}{ll}
\\
2^{2} \rightarrow 30 & (4) \\
2_{31} & (12) \\
\hline
\end{array} \\
& \begin{array}{ll}
2 & 3^{1}(12) \\
>3^{2} & (36)
\end{array} \\
& \begin{array}{r}
\left.\begin{array}{r}
30(8) \\
2^{3} \rightarrow 3^{1}(24) \\
\rightarrow 3^{2}(72)
\end{array}\right)
\end{array}
\end{aligned}
$$

$\left.\begin{array}{l}\left.\begin{array}{l}2 \\ \hline\end{array} \right\rvert\, 10800 \\ \hline 2\end{array}\right) 5400$
$Q N=2^{3} \times 3^{2} \times 53$
(1) Total factor $(T f)\left(4^{\kappa}\right)$
(2) odd $f(12)(3 \times 4)^{\sim}(2 \rightarrow y)$
(3) $\operatorname{erenf}(48-12=36)^{r}$
(4) perfect square $(8)=2 \times 2 \times 2=8$
(8) perfect cubes (4) $=2 \times 1 \times 2=4$

Sol (1) $4 \times 3 \times 4=48$

(4) for perfect square, power should be multiply of $\underset{\text { even }}{2 \text { and (0). }}$

(5) for no. to be perfect cube, power have to multiply of 3 and

Q How many factors of no. 72 are multiply of 6 .
Sol

$$
\begin{aligned}
& 72=2^{3} \times 3^{2} \\
& (2 \times 3)\left(2^{2} \times 31\right)
\end{aligned}
$$

Q

$$
\begin{aligned}
120 & =2^{3} \times 3^{1} \times 5^{1} \\
& =2^{2} \times 3^{\prime}\left(2^{\prime} \times 5^{\prime}\right) \\
& =\underbrace{12(1,2,5,10)}_{-=-10} .
\end{aligned}
$$

Q

$$
\begin{array}{cc}
30 & \left(3 \times 2^{18 \times 3}\right)^{18} \text { An } \\
(2 \times 3 \times 5) & \left(2^{2} \times 3^{1} \times 5^{2}\right)
\end{array}
$$

* Primefactor:nell of higher powers.

(2) Factorial :-L is a product of 2 no.'s L Multiplication of Natural No. from 1 to N.
Q

Sol

$$
\begin{aligned}
6! & =6 \times 5!=72 \underline{0} \\
7! & =7 \times 6 \times 5!=504 \underline{0}
\end{aligned}
$$

\Rightarrow unit digit

$$
5!=1 \times(2) \times 3 \times 4 \times(5)=120 .
$$

first 4 no.'s

Ans $\rightarrow 3$
Note:- s ! onwards, every! ends with atteast a single 0.

Q 100! ends with how many 0 ?

$$
\begin{aligned}
& \text { Sol } 100 \text { 䨐! }=1 \times(2) \times 3 \times(4) \times 5 \times(6)-\frac{10}{5} \ldots \times 99 \times 100 \\
& 5 \rightarrow \text { कम है } \\
& \begin{aligned}
\frac{100}{5}= & 20 \quad[5,10,15,20 \ldots 100] \approx 5^{1} \\
& +\cdots \\
\frac{20}{5}= & \frac{4}{24}[25,50,75,100] \approx 5^{2}
\end{aligned}
\end{aligned}
$$

Q. $\frac{100}{3^{n}}$ (maximum power of 3 contained in 100!)

Sol $100!=1 \times 2 \times 3 \times 4 \times 5 \times 6 \times \ldots \times 100$

$\geqslant \frac{100}{7 n}$
Sol $\frac{100}{7}=14[7,14,21, \ldots 98] \approx 71$
) $\quad \begin{aligned} \frac{14}{7} & =\frac{2[49,98]}{}=\approx 7^{2} \\ & =16 \sqrt{2}\end{aligned}$
η
$\therefore \frac{100}{15^{w}}$
Sol y $\frac{100}{15}=6[15,30, \ldots . .90]$
$1 \quad 100!=1 \times 2 \times 3 \times 4 \times 5 \times \ldots \ldots+99 \times 100$
$1 \quad \frac{100!}{(3 \times 5)^{n}}$

$$
\begin{aligned}
100! & =3^{48} \times 5^{24} \\
= & (3 \times 5)^{24} \times(3)^{24} \\
& =(15)^{24}
\end{aligned}
$$

($15 \rightarrow$ not prime no.
hence, बार बार अनेक

Q A no. (of 125 factors of the number are perfect squares.
Ans 27 factors of the number are 71 - cube. then overall Total factors of the No. are?

Q Find the No. of trailing 0 's.
(a) $1^{1} \times 2^{2} \times 3^{3} \times \ldots 100^{100}$.
(b) $1!\times 2!\times 3!\times \ldots \ldots \times 100!$.

* BASE SYSTEM :-

2	25	Remainder	
2	12	1	1
2	6	0	
2	3	0	
	1	1	

$$
\rightarrow(16 * 8+0+0+1)
$$

$$
(25)_{10}
$$

MOHIT CHOUKSEY

$$
\checkmark\left(\begin{array}{ccccc}
\text { hr } & \text { Min } & \operatorname{Sec} \\
3 & : & 24 & : & 36 \\
+2 & : & 35 & : & 24 \\
\hline 6 & : & 0 & : & 0
\end{array}\right) b=60
$$

if hr Min. Sec \rightarrow not given,
then also Base 60.

\[

\]

(1)
hr : min.
Min.: Sec

$$
(60 \rightarrow 1 \rightarrow(1))
$$

$$
\begin{array}{ccccc}
3 & : & 24 & : & 36 \\
2 & : & 45 & : & 32 \\
\hline 6 & : & 10 & : & 8
\end{array}
$$

$$
\begin{aligned}
& 36+32=\text { bap }+8 \\
& b=60
\end{aligned}
$$

Q

$$
2+6=b+1
$$

(8) $b \rightarrow 7$

carry
forward तब करेंगे

$$
\text { when = or }>\text { base }
$$

$$
\left.\begin{array}{c}
\left(\begin{array}{ll}
1-2 & \text { QNot } \\
\text { possible }
\end{array}\right. \\
\text { hence Borrow } \\
\text { करेंगें }
\end{array}\right)
$$

Q95
(Gatie 2014) $\left(\begin{array}{llll}7 & 5 & 2 & 6\end{array}\right)_{8}-(y)_{8}=(4364)_{8}$

$$
k \times \operatorname{Lcm}(3 \times 4)
$$

* no. divisible by $(2,3,5)$

$$
\|_{v} \operatorname{LCM}(2,3,5) k
$$

30 K

Q

$$
\begin{aligned}
& \text { Red light flashes } \rightarrow\left[\begin{array}{ll}
R(3 \text { times } & \rightarrow(2 \text { even }) \\
G(5 t & \rightarrow 3 \text { min })
\end{array}\right] \rightarrow 180 \mathrm{sec} . \\
& \left(\begin{array}{ll}
R_{1}, & G_{1} \\
40 \mathrm{sec} & 36 \mathrm{sec}
\end{array}\right) \\
& \left(\begin{array}{ll}
R_{1} & , G_{1} \\
40 & 36
\end{array}\right)_{\text {secs }} \\
& \begin{array}{c}
=\frac{360 \text { secs }}{} \quad \underset{ }{\approx 6 \text { ins }}
\end{array} \\
& r \text { lbs }=\frac{60 \times 60}{360} \\
& \text { (10times } \\
& \operatorname{LCM}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)=\frac{\operatorname{LCM}(a, c, e)}{\operatorname{HCF}(b, d, f)}
\end{aligned}
$$

Method

$$
\xrightarrow[H]{\rightarrow}\left(\frac{2}{3}, \frac{3}{5}\right)_{\text {min }}=\left(\frac{6}{1}\right) \text { ming }
$$

So within $1 \mathrm{hs} \rightarrow \frac{60 \mathrm{~min}}{6}=6$ times
\rightarrow if question says, they flash together at the begining add ' 1 ' to the answer.

MOHIT CHOUKSEY

918166 CYCLICITY $:$ If a no is ending in 2 , its square
lave to end in 4 , abe $\rightarrow 8$,
918186 CYCLICITY :- If a no is ending in 2 , its squad

$$
\frac{\text { quad } \rightarrow 6 \text {. }}{2(4), 2^{8}, 2(2), 2 \text { (16) }} 4 n
$$

$34 n+3$

$$
\text { Q }(73(2))^{4\left(\frac{47}{4}\right)^{\operatorname{Re} 3}} \ln ^{4 n+3} \ldots . . .=(u=)
$$

refer to cyclicity chart of 2
3 Ans $u=8$

3
Q $(74)^{91(\text { odd })}$ unit place $=\cdots-4$
$3(74)^{92 \text { (even) }} \rightarrow 1 \rightarrow 1$, $11 \longrightarrow 1$ (6.)
y
?
,
,
: MOHIT CHOUKSEY

Q $\quad(237)^{254} \times(738)^{227} \times(76)^{2401} \times(79)^{5407}$

Pg 90 Gate 2016
Q 178

$$
\left.211)^{870} \times 14 \sqrt{12}\right)^{27} \times\left(\frac{3}{4}\right)^{\frac{24}{4}}
$$

(7) Aus.:-
$1+6 \times 1=7$ Ans
MOHIT CHOUKSEY

* REMAINDERS any no. can be -written in the form
$\underset{V}{N}=$ Remainderm(Divisor)

$$
r 80=8 m(9)
$$

mod

$$
\sqrt{26}=5 m(7)
$$

Take $80^{\circ}=8 \mathrm{~m}(9)$

\rightarrow Rule $-1 \longrightarrow \pm,-x$
$a=b \bmod c$
$d=e \bmod c$

if $\begin{array}{rl}a & b \\ +d & +e\end{array}$

Q Eg:-

$$
\begin{aligned}
& \frac{1421 \times 1423 \times 1425}{5 \times(-5)^{12} \times(-3)=\frac{75}{12}} \text { RC(3) Ans) } \\
& \frac{1421 \times 1423 \times 1425}{12}=\frac{315}{12} \\
& 12 \\
& 1421=5 m(12) \\
& =31 \\
& 1423=7 m(12) \\
& 1425=-9 \mathrm{~m} \text { (12) } \\
& 1421 \times 1423 \times 1425=\frac{3}{5} 5 \mathrm{~m}(12) \\
& =3 \mathrm{~m}(12)
\end{aligned}
$$

Rule-2
$a=b \bmod c$.
$a^{n}=b^{n} \bmod c$.

$$
b^{n}<c
$$

$Q \quad 2^{600} \div 15$
$24=1 \mathrm{~m}(15)$
$(24)^{150}=(1)^{150} m(15)$
$2^{600}=1 m(15)$

MOHIT CHOUKSEY

Pquo
Q6 and Qy $784 \div 342$
Sol

$$
\begin{gathered}
\underbrace{7^{3}}_{a}=\underbrace{(1)}_{b}) \underbrace{(342)}_{c} \\
\left(7^{7^{2}}\right)^{8}=(1)^{28} m(342) \\
16
\end{gathered}
$$

Q (a) $\frac{10^{10}+10^{100}+10^{1000}-10^{1000}}{3}$
Sol $(10)^{10}=(1)^{10} \bmod (3)$

$$
\begin{aligned}
+(10)^{100} & =(1)^{100} \bmod (3) \\
+(10)^{1000} & =(1)^{1000} \bmod 3 \\
+(10)^{1000} & =(1)^{1000} \bmod 3 \\
& =2+1-1 \\
& =2^{r}
\end{aligned}
$$

(b)
 also

$$
\begin{aligned}
5^{3} & =(-1) m 7 \\
\left(5^{3}\right)^{208} & =(-1)^{208} m 7 \\
x(524 & =1 \text { m } 7 \\
(5)^{1} & =-2 m x^{x} m
\end{aligned}
$$

$$
5 \leqslant 7
$$

$$
\text { * }(5)^{625}=\frac{(-2)^{625} m 7}{\frac{\text { Noneed }}{\frac{\text { amy no }}{}}}
$$

hence, Taken smallel power.

$$
\begin{aligned}
& 5^{3}=(-2)^{3} m \quad 7 \\
& 5^{3}=-8 m^{8} \\
& 53=\frac{a^{a}}{} \frac{1}{\sqrt{2} a} m 7 \\
& \begin{aligned}
r\left(5^{2}\right)^{3} & =(4)^{3} \quad m \quad 7 \quad \frac{64}{7}= \\
\left(5^{6}\right)^{104} & =(1)^{104} m \quad 7 \quad 7 \quad \text { Re } \rightarrow 1
\end{aligned} \\
& 5^{624}=1 m 7
\end{aligned}
$$

CHAPTER 2

㟋 365 d , $5 \mathrm{hrs}, 48 \mathrm{mins}, 11$ secs......
$365 \mathrm{~d} \approx 6$ hrs
(1). Every multiple of 4 is a Leap year $(4,8,12,16 \ldots$.
(2) Century year is Non leap year $(100,200,300, \ldots$ NL $)$
(3) Evely 4th century year is $L Y(400,800,1200, \ldots L Y)$
ordinary year

$$
\begin{aligned}
& 1\left(0 . Y_{0}\right)=365 d=\frac{52 \times 7^{\circ}}{6}+1 \text { odd day } \\
& \left.1\left(0 . Y_{0}\right)=\left(\frac{365}{7}\right) d \text { Remainder }(\operatorname{Re}){ }^{1}\right) \text { odd day. } \\
& 1(\underset{\operatorname{LoY})}{7}) d\left(\frac{366}{\operatorname{Re} 2}\right. \text { odd day. }
\end{aligned}
$$

within ${ }_{1}$ st $100 Y \longrightarrow 24\left(L_{0} Y_{0}\right)+76\left(0, Y_{0}\right)$

$$
x_{2}\left(R_{e}\right)+x 1\left(R_{e}\right)
$$

$$
48+76=\frac{124}{7} \operatorname{Re} \text { od day }
$$

since heres
Re cant be
) 4 $>\times 100 Y \longrightarrow 5$ odd days
$X 200 Y \rightarrow 3$ odd days

$$
\begin{aligned}
& \times 300 Y \rightarrow 1 \rightarrow 1- \\
& \sqrt{400 Y} \rightarrow 6 \rightarrow 1-1 \\
& \because \times 4 \gamma
\end{aligned}
$$

$$
\because \times 4 \uparrow
$$

heme
old days
extra
1 day
5) $1^{\text {st }}$ odd day is MONday
(greqonon calender $\longrightarrow 0101$ AD)

MOHIT CHOUKSEY
Scanned by CamScanner

Q If $15^{\text {th }}$ Aug 1947 was Friday, then $26^{\text {th }}$ January 1950 was \qquad
Sol $26^{\text {th }}$ Jan. 1950

$$
0-1900 \longrightarrow 1
$$

$$
24+37=61
$$

$$
\frac{61}{7}=
$$

$$
\begin{aligned}
& \frac{1}{75} \\
& -74 \\
& \hline 65
\end{aligned}
$$

\# Alternate Method:-
Let $15^{\text {th }}$ August $1947=(\mathrm{Fri})=0^{\text {th }}$ odd day

)
;
!
?
,
j
,
2
MOHIT CHOUKSEY

$$
\begin{aligned}
n(A \cup B)= & +[n(A)+n(B)] \\
& -[n(A \cap B)]
\end{aligned}
$$

$$
\begin{aligned}
n(A \cup B \cup C)= & +[n(A)+n(B)+n(C)] \\
& -[n(A \cap B)-n(B \cap C)+n(A \cap C)] \\
& +[n(A \cap B \cap C)]
\end{aligned}
$$

MOHIT CHOUKSEY

Q How many students are playing any of these 3 games
(or) atleast one of 3 games

$$
n(A \cup B \cup C)=[100+(x+y+z)]
$$

Let $\rightarrow x, y, z \leftarrow$ naming
3
3 Q hone of these 3 games
3
3

$$
r T-n(A \cup B \cup C)
$$

3
Total

3
3
3
MOHIT CHOUKSEY

(a) atteast 2 of games $=(B)+(B)$
(a) at least 1 of games $=(B)+(B)+B$
=sum of all the values.
cricket only \rightarrow (iuside)
cricket \rightarrow (बाटर人)
$1,2,3$ Pq48
a (20)
$b 10 \% \mathrm{r}$

c $20+0+10=30 \% r$

Pg 488 to 11

110

SOl

MOHIT CHOUKSEY

$$
T-30=n(A \cup B)=120
$$

$$
\begin{gathered}
u(A)+u(B)-u(A \cap B)=120 \\
55+85-\prime-=120 \\
u(A \cap B)=20
\end{gathered}
$$

MOHIT CHOUKSEY

'p gAg
$2 \frac{13}{}$ to $16 \rightarrow \log _{i c}$ al Venn Diagram \rightarrow eyesight Test.
$10 / 8 / 16$
QQ

$$
\begin{aligned}
& S_{2}=1 \times 2+2 \times 3 \\
& S_{2}=8
\end{aligned}
$$

put $u=2$ op $n s$

$$
\begin{aligned}
& S_{2}=8(c) \\
& \Sigma T_{n}=\Sigma n(n+1) \\
& S_{n}=\left(\Sigma n^{2}+\Sigma n\right) \\
& Q T_{1} \Rightarrow A=2^{172}-2^{171} \\
& A=2^{171}(2-1) \\
& A=2^{171}=
\end{aligned}
$$

Q dino. N lies b/w $q<N<1000$

$$
S_{N}+P_{N}=N
$$

digited
Q n is a natural no. on the base of 10 and converted into base of 7 and base 9 , how many such no's are there. $\underbrace{\left.\begin{array}{lll}a & b & c\end{array}\right)_{7}}$

$$
\left(\begin{array}{lll}
c & b & a
\end{array}\right)_{q}
$$

TIME \& WORK
$A \longrightarrow 1.6 d$
1 day $\longrightarrow 1 / 16$ work of A

13 day
work of $A$$\longrightarrow \frac{13}{16}$

Q A is 4 times as effo as B and takes 15 days less than B to finish a work o in how many days will the work get finished! done if A and B are working together

Sol

$$
\begin{gathered}
\frac{1}{4}(4 x){ }^{A} x_{\text {days }}=4 B \\
3 x=15 \\
x=5
\end{gathered}
$$

(4x) days
$A \longrightarrow 5$ days \longrightarrow one day work $\longrightarrow 1 / 5$

$$
B \longrightarrow 20 \text { days } \longrightarrow \longrightarrow 1 / 20
$$

$$
[1 / 5+1 / 20]=[1 / 4]
$$

in one day $1 / 4^{\text {th }}$ of work is completed
so 4 days
MOHIT CHOUKSEY dup:

$$
\begin{aligned}
& \text { Left overwork }=1-\frac{13}{16} \\
& =3 / 16 \\
& 1 / 2 \times 10 L_{\text {days }}^{L_{\text {da }}}=2 B \longrightarrow 10 \text { days } \\
& \underbrace{=}_{2 \times 10} A=1 / 2 B \longrightarrow 10 \text { days } \\
& =20 \text { days }
\end{aligned}
$$

Alternate work concept

$$
\begin{aligned}
& \underset{\longrightarrow}{\rightarrow} A=12 \text { days } \\
& \text { alone } B=16 \text { days }
\end{aligned}
$$

Q In how many days will the work be done if A and B are working alternatively, begining with A.

$$
\begin{aligned}
& \text { Sol } \\
& \text { Isth day } \quad \text { and day } \\
& \text { of } A \text { of } B \\
& \begin{array}{l}
2 \text { day } \\
\text { work }
\end{array}=\left[\left(\frac{1}{12}+\frac{1}{16}\right)\right]=\frac{7}{48} \times 6=\frac{42}{48}=\frac{7}{8} \\
& \times 6 \text { cycles } \\
& \begin{array}{l}
12 \text { days }=\frac{7}{8}
\end{array} \|(\text { low })=1 / 8
\end{aligned}
$$

${ }^{\text {on }} 13^{\text {th }}$ day
(A)

$$
1 / 8-1 / 12=\frac{1}{24}(\text { Low })
$$

on 14 th day

$$
\text { (B) } \frac{1 / 24}{1 / 16}=2 / 3
$$

Q if B starts the work.
So) 12 days work $=7 / 8$, LOW $=1 / 8$
on $1^{\text {th }}$ day (B)

MOHIT CHOUKSEY

1) \sin
$\left.\begin{aligned} & 2 d \omega=[1 / 16+1 / 12]=7 / 48 \times 6=\frac{42}{48}=7 / 8 \\ & \times 6\end{aligned}+12 d \omega=7 / 8 \right\rvert\, L 0 \omega=1 / 8$
D on $13^{\text {th }}$ day $1 / 8-1 / 16=1 / 16$ [LOW]
$\$$ on $14^{\text {m d day }}$

$$
\begin{equation*}
\frac{1 / 16}{1 / 12}=3 / 4 \tag{A}
\end{equation*}
$$

$\rightarrow 133 / 4$ days 多 if B starts
Q. $A=10$ days maxm. 2 people are allowed to work ain ${ }_{2 l o n e}^{\rightarrow}, B=12$ days any single day with no two consecutive day having same $C=15$ days pair of people repeating Then the minimum no. of days in which work can be done?

Sol $1^{\text {st } d \omega}$
mon \rightarrow

$$
\text { of }(A \text { and } B)
$$

woes \rightarrow of $(A \& C)$
and do
on stu day

$$
\frac{18}{60}-\frac{11}{60}=\frac{7}{60}(\text { Low })
$$

$$
\frac{7 / 60}{1 / 60}=7 / 10 \quad \frac{57 / 10 \text { days }}{\text { Aus }}
$$

* Men day Concept

Inversely proper
$\uparrow a \quad \alpha \frac{1}{b} \downarrow$

$$
\begin{gathered}
a=\frac{k}{b} \\
a \times b=k \\
a_{1} \times b_{1}=a_{2} \times b_{2}
\end{gathered}
$$

$\uparrow m \propto \frac{1}{d} \downarrow$

$$
\begin{aligned}
& m \times d=k \\
& m_{1} \times d_{1}=m_{2} \times d_{2}
\end{aligned}
$$

$$
\text { if }(200 \mathrm{~m} \times 10 \text { days })=2000 \mathrm{md}
$$

$$
\begin{aligned}
& \qquad 1 / 3 \mathrm{rd} \\
& \qquad 0 \mathrm{~m} \longrightarrow 270 \mathrm{~d} \\
& 30 \mathrm{~m} \longrightarrow x
\end{aligned} \begin{aligned}
& \longrightarrow \text { 3times } \\
90 \times 270 & =30 \times x \\
x & =810
\end{aligned}
$$

Q5

$$
\begin{gathered}
(4 m+3 w) \not 0^{2}=(6 m+9 w) \times y \\
(8 m+6 w)=(6 m+9 w) \\
2 m=3 w, \quad 1 m=105 w \\
(20 m+6 w) x=(6 m+9 w) \times 4 \\
(30 w+6 w) x=(9 w+9 w) \times 4 \\
(36 w) x=(18 w \times 4) \\
x=2 \text { days }
\end{gathered}
$$

QII

$$
\begin{gathered}
(5 M+7-B-24= \\
(9 m+18 b) \times 15 \times 9=(3 m+6 b)) \mid \times x \times 9 \\
3(3 m+6 b) \times 15=(3 m+6 b) x \\
x=45 \text { days }
\end{gathered}
$$

MOHIT CHOUKSEY

QB

$$
\begin{gathered}
A=615 \times 8=120 \mathrm{hs}] \\
\left.B=6 \frac{2}{3} \times 9=60 \mathrm{hs}\right] \\
10\left[\frac{1}{120}+\frac{1}{60}\right] x=1 \\
100\left[\frac{\not 2}{120}\right] x=1 \\
x=4
\end{gathered}
$$

Q9

$$
\begin{array}{ll}
A=24 \text { days } & \left(\frac{1}{24}\right) x+\left(\frac{1}{36}\right) x=6 \\
B=36 \text { days } & (1 / 24) x+6\left[\left(\frac{1}{24}\right)+\left(\frac{1}{36}\right)\right]=1 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}
$$

Q
shes

$$
[1 / 10+1 / 15]=1 / 6
$$

$$
[1 / 10-1 / 15]=\frac{1}{30}
$$

drainage 30 hes

Q

$$
\begin{aligned}
& \text { SIR } x \\
& 10 \rightarrow \operatorname{mins} \\
&\left.\frac{1}{x}-\frac{-1}{60}\right]=1 / 2 \\
& \frac{1}{x}-\frac{1}{60}=\frac{1}{20} \\
& \frac{1}{x}=\frac{1}{20}+\frac{1}{60}=
\end{aligned}
$$

MOHIT CHOUKSEY

Previous Qu.
$10\left[\frac{1}{y}-\frac{-1}{30}\right]=1$
half the
tank $y=7.5 \mathrm{~min}$

$$
\begin{array}{r}
25 \\
12 \\
\hline 50 \\
25 x \\
\hline 300 \\
\hline
\end{array}
$$

SIR $Q=25 \times 12=300 \mathrm{hs}$.
R

$$
\left(\begin{array}{l}
\frac{1 / 300}{\left(\frac{5 \times 12}{300}\right)} \rightarrow \underset{\substack{1 \operatorname{lns} \\
\text { work of } Q \\
\text { work }}}{\left(1 / \text { sh }^{\text {wo }}\right. \text { of }}
\end{array}\right.
$$

$$
50 \times 12=600 \mathrm{hes}
$$

$$
1 / 600 \leftarrow 1 \text { he work of } R
$$

$$
\frac{1}{6}
$$

SIR

$$
\begin{aligned}
& \left(\begin{array}{c}
\left(\frac{5 \times 12}{300}\right) \\
\frac{60}{300}
\end{array} \rightarrow 1 / 5^{\text {th }}\right. \text { of } \\
& \therefore\left(\frac{\left(\frac{18 \times 7}{600}\right)}{\frac{126}{600}} \rightarrow\right. \text { own fraction } \\
& \frac{60}{300}: \frac{63}{-300} \\
& 20: 21 \\
& \text { Q173 } \\
& 420^{16}
\end{aligned}
$$

Q2

$$
\begin{aligned}
& 4 m \times 40=7 \omega \times 40 \\
& 4 m=7 \omega
\end{aligned}
$$

\hat{i}

Mixture

$10,000 \rightarrow 750$
$100 \rightarrow 7.5 \%$

MOHIT CHOUKSEY

Quantity of milk left after $n^{\text {th }}$ operation Initial quantity of milk $=\left[\frac{a-b}{a}\right]^{n}=\left[1-\frac{b}{a}\right]^{n}$. Qu. of Milk left after u th apr $=I Q \times\left[1-\frac{b}{a}\right]^{n}$
where a is initial quantity, b is quantity taken out everytime k replaced by water, $n=$ no. of replacements/ operations.

$$
\text { Quantity _ - - of milk after 1stopr }=100\left[1-\frac{10}{100}\right]^{1}=\begin{array}{r}
100 x \\
0.9
\end{array}
$$

$$
\ldots, \ldots, \ldots, z^{n d}, \ldots=100 \times 0.9
$$

$$
\times 0.9
$$

$$
=81 \sqrt{ }
$$

$$
\text { 3rd } \quad \text { and so,on } \quad, \quad, \quad=72.9
$$

Now

$$
\begin{aligned}
2^{\text {nd }} \text { opr }^{r} & =100
\end{aligned} \begin{aligned}
& \left.1-\frac{10}{100}\right]\left[1-\frac{20}{100}\right] \\
& \\
& =100 \times 0.9 \times 0.8 \\
& \\
& =72 \%
\end{aligned}
$$

$$
\begin{aligned}
& {\left[x-\frac{10}{100} x\right] \quad x[1-0.1]} \\
& { }_{1} \uparrow_{10 x} \quad \stackrel{\downarrow}{0.90 x} \\
& 1.20 x \quad 0.80 x \\
& 1.30 x \quad 0.77 x \\
& 1.23 x \\
& \text { like }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q Milk }=40\left[1-\frac{4}{40}\right]\left[1-\frac{5}{40}\right]\left[1-\frac{6}{40}\right] \\
&=\text { (A) } \\
& \text { watel left }=40-(A) \\
&\left.\frac{\text { Pq } 69}{\text { Lef }} 10\left[1-\frac{1}{10}\right]\right]^{3}=7.29
\end{aligned}
$$

111816

$$
\begin{gathered}
\left(\frac{1}{A}+\frac{16}{B}=\frac{1}{12}\right)\left(\frac{1}{B}+\frac{1}{C}=\frac{1}{16}\right) \rightarrow B=48 \\
\frac{5}{A}+\frac{7}{B}+\frac{13}{C}=1 \\
5\left[\frac{1}{A}+\frac{1}{B}\right]+2\left[\frac{1}{B}+\frac{1}{C}\right]+\frac{11}{C}=1 \\
5(1 / 12)+2(y / 16)+\frac{11}{C}=1 \\
T_{5} \rightarrow 48 \\
C=24
\end{gathered}
$$

Percentage
Q.) A's salary is 20% more than that of B. By how much $\%$ is B^{\prime} s salary is less than that of $A . \left\lvert\, \begin{aligned} & \text { et } \\ & 100 \\ & \\ & 10 \% \%\end{aligned} 110\right.$
Sol

$$
\begin{gathered}
\frac{\bar{B}}{}=100 \quad \frac{A}{20 \% \uparrow}=P 0 \\
\frac{-20}{120}=-1 / 6 \approx 16.6 \% \downarrow
\end{gathered}
$$

是

$$
\frac{-10}{11 \sigma^{\prime}}=\frac{-1}{11} \approx 9.09 \downarrow
$$

Q $>$ A's salary is 20% less than that of B. By how much $\%$ is B^{\prime} s salary is more than that of A.

$$
\begin{gathered}
B=100, A=80 \\
\frac{+2 \phi}{8 \varnothing}=\frac{1}{4} \approx 25 \% \uparrow
\end{gathered}
$$

Let $B=100 \xrightarrow{25 \% \downarrow} 75$

$$
\frac{+25}{75}=1 / 3 \approx 33 \cdot \overline{3} \uparrow
$$

MOHIT CHOUKSEY

*

$\Delta R=x+y+\frac{x y}{100}$

MOHIT CHOUKSEY

Ex:- $\quad A=l \times b$
$D=r \times t$
Revenue $(R)=$ Price of car $(P) \times(N) N_{0}$. of car

* $l=20 \uparrow \quad b=10 \uparrow$
$A=11 \times 1 b$
$A^{\prime}=1.2 l \times 1.1 \mathrm{~b}$
$A^{\prime}=1.32 \mathrm{lb}$
$20+10+\frac{20 \times 10}{100}$
$=32 \%$.
$l=20 \uparrow \quad b=10 \downarrow$
$A=l \times b$
$A^{\prime}=1.2 l \times 0.9 b$

$$
A^{\prime}=1.08 \mathrm{Ub}
$$

$$
\begin{aligned}
& * * * * * \text { PROFIT } \\
& P=(S P-C P)
\end{aligned}
$$

r selling price ($S P$)
r cost price ($C P$)

$$
\left.\begin{array}{l}
P_{0} \%=\left[\frac{(S P-C P)}{(C P)}\right] \times 100 \\
L \%=\left[\frac{\left(\frac{\text { LOs }}{}\right.}{(C P-S P)}\right. \\
C P
\end{array}\right] \times 100 .
$$

20% Profit $\longrightarrow \quad S P=C P \times 1.2$
\rightarrow SP is 20% above the cost price.

$$
20 \% \text { loss } \longrightarrow \quad S P=C P \times 0.8
$$

$L S P$ is 20% below the cost price.
Qeggsare bought at the rate of 7 eggs for Rs. 1 . If the shopkeeper wants to make a profit of 40%, how many eggs should he sell for 1 Rs.

Sol

$$
\begin{aligned}
C P(1 \text { eq }) & =(1 / 7) \\
S P \text { of } 1 \text { eq } & =(1 / 7) \times 1.4 \\
& =
\end{aligned}
$$

MOHIT CHOUKSEY

Q ${ }^{(1)} A$ dishonest shopkeeper uses a false weight of 800 gm instead of 1 kg weight. If he promises to sell the goods and at the cost price, then his profit $\%$
$1 Q^{(2)}$ on selling 36 mangoes, a shopkeeper recovers a cp of 33 is mangoes only. Find los 5%

Sol 1

$$
\begin{array}{r}
S P=C P \\
P=(S P-C R)
\end{array}
$$

SIR ${ }^{2}$

$$
\frac{R^{R}}{\pi C P}=\frac{(C P \text { of } 200 \text { gmo })}{(C P \text { of sop gmo })}=1 / 4 \approx 25 \%
$$

Sol 2

$$
\frac{L}{C P}=\frac{C P \text { of } \not \approx \text { Mangoes }}{(C P \text { of } 36 \text { Mangoes })}=1 / 12 \approx 8 . \overline{3} \%
$$

Q1) A dishonest milkman uses a false measuring vessel of 800 ml instead of 1, and further adulterates milk with 20% water (free of cost). If he promises to sell the milk at the $C P$ then his Profit \%.

Sol

Pst cheating $\longrightarrow \frac{C P \text { of } 200 \mathrm{~mL}}{C P \text { of } 9 \mathrm{domL}}=1 / 4$
MOHIT CHOUKSEY
lISt cheating, (without mixing water) \qquad

$$
(1.25) \times(1.2)=1.50
$$

or

$$
25 \times 20+\frac{25 \times 20}{100}=50 \%
$$

ex

$$
\frac{1}{6}=16 \cdot \bar{b}^{6} / 0 \mathrm{w}
$$

$$
\begin{aligned}
& 1 \mathrm{ml}= 1 \text { Rs } \\
& 1000 \mathrm{ml}^{2}=\begin{array}{ll}
200 \mathrm{ml} & \\
(+1000 \text { Rs } \\
200 \mathrm{ml} & 0 \mathrm{Rs} \\
& 1000 \mathrm{Rs}= \\
& \text { Total } \\
& \text { Price (TCP) }
\end{array}
\end{aligned}
$$

$800 \mathrm{Wl} \longrightarrow$ Rs. 1000
400 ml \qquad $\rightarrow R s \cdot 500$

1200 ml \qquad $\rightarrow T C P=$ RS 1500

$$
\frac{P}{C P}=\frac{500}{1000} \times 100=50 \%
$$

other

$$
e^{x}
$$

$1 \mathrm{mi}=-1 / 6$
$800 \mathrm{ml} \xrightarrow{\mathrm{mL}}$ Rs 800
$(160 \mathrm{ml} \xrightarrow{\omega}$ Rs 0 .
$960^{\mathrm{K}} \mathrm{ml} \longrightarrow$ Rs. $800=T C P$
adulterate \rightarrow add puts dols wot
mixture 20.1
contain water ware
baker
$1 / s^{\text {mo }}$ $960 \mathrm{ml} \longrightarrow 1200 \mathrm{Rs}$

$$
P / C P=\frac{400}{800} \times 100=5000
$$

$$
\begin{aligned}
& 130 \\
& T C^{\prime}=130
\end{aligned}
$$

1.25×1.20
$25+20 \times \frac{25 \times 20}{100}$
$=50 \%$
successive profit wndn \rightarrow dhamake
$\xrightarrow{\longrightarrow}-79 \%$

$$
\begin{aligned}
& 100 \\
& \downarrow \times \circ 9 \\
& 90 \\
& \downarrow \times 09 \\
& 81 \times .9 \\
& \downarrow \times 0
\end{aligned}
$$

pey dhamaka.
$-120+32$

$$
1
$$

MARKD PRICE \longrightarrow List Price, Labelled price, print price, MRP

marked pricepey discount belling price and $C P$ beys \rightarrow Profit.
Q.) After offering a discount of 20%, a shopkeeper still manages to make a profit of 25%. By how much $\%$ is the markprice above the cost price

Sol
1

1

Two Rules
L Rule (1) Two articles are sold at a common sP (selling price) of Rs.seach. one is sold at a profit of $P \%$ and another at a coss of P\%, then effectively there is always a loss during the entire transaction

$$
\operatorname{loss} \%=\frac{p^{2}}{100} \%
$$

L) Rule (2) Two articles are bought at a common $C P$, one is sold at a profit of $P \%$ and another at a loss of $P \%$, then effectively there is no profit no loss.

Q Two shirts are sold at a common $S P$ of RS 480 each, 1 is sold at a profit of 20% and 2 B another at a loss of 20% then find loss and loss $\%$

801

01

$$
\begin{aligned}
& \text { loss }=\frac{2 \times 20 \times 20 \times 480}{80 \times 120}=40 \bar{₹} \\
& \text { Loss } \%=\frac{20 \times 20}{18}=4 \%
\end{aligned}
$$

hence $\frac{45}{150} \times 100=-30 \%$

$S I R$

$$
\begin{gathered}
11 \cdot 11 \rightarrow 1 / 9 \\
M P\left(1-\frac{100}{10 \phi}\right) \\
M P(1-(1 / 9) \\
=S P=C P \times\left(1+\frac{1}{7}\right) \\
M P \times \$ / 9=C P \times 8 / 7 \\
M P=9 / 7 C P \\
M M P=1028 S 6 C P
\end{gathered}
$$

MOHIT CHOUKSEY

$$
\begin{aligned}
& 80 \% \xrightarrow{P} E \\
& 70 \% \xrightarrow{P} S \\
& 15 \% \underset{H}{ } E S
\end{aligned}
$$

$$
195 \xrightarrow{P} \text { E\&S }
$$

SIR

comparison b/w 2 quantities
Q.) A student scored marks in 5 subjects in the ratio of $5: 6: 7: 8: 9$. If the max. marks for all subjects is same and on aggregate, he scored 60% masks. in how many subjects did he pars the exam if passing marks is 50%.

Sol let the maxi. marks in each subject $=100$

MOHIT CHOUKSEY

$$
\begin{aligned}
& n(A, B)=n(A) \quad u(B)-u(A \cap B) \\
& \text { ل1 } 14 \quad 14 \\
& 85 \%=\begin{array}{l}
80 \\
\%
\end{array}+70 \%-x \% \\
& x=65 \%
\end{aligned}
$$

PROPORTION

$$
\begin{aligned}
& \text { I II III: IV } \\
& a: b: \therefore c: d \\
& \frac{a}{b}=c / d \\
& a \times d=b \times c
\end{aligned}
$$

if a, b, c, d are in continuous proportion.

$$
\frac{a}{b}=\frac{b}{c} \Rightarrow b^{2}=a c \Rightarrow b=\sqrt{a \times c}
$$

b is am (geometric mean)
or MP (mean proportion) $b / w(a<c)$
DIRECT PROPORTION

$$
\begin{aligned}
& \text { division constant } \\
& \begin{array}{l}
\uparrow a<b \uparrow \\
a=k b^{\prime} \\
=k
\end{array}\left|\begin{array}{ll}
1 / b_{1}=a_{2} / b_{2} \\
\rightarrow \text { unitary method } \\
\end{array}\right| \begin{array}{ll}
\\
\end{array}
\end{aligned}
$$

ONaC2O12
QReduction in speed of a Railway engine is directly α to the sq. rot of no. of compartments attached. If the maximum speed of the engine was 42 kmph when no compartment was attached and speed was 24 kmph when 9 compartments were attached. then the maxi. no. of compartinents that can be carried forward by the Engine.

$$
42-k(3)=24
$$

Sol

$$
\begin{aligned}
& \operatorname{Redn} \propto \sqrt{n} \\
& \left.v_{2}-v_{1}\right)=k \sqrt{n} \\
& 42-24=k \sqrt{9} \\
& k=6
\end{aligned} \quad 4 \begin{array}{rr}
\\
k=6 \sqrt{n} \\
& \\
& \\
&
\end{array}
$$

INVERSE PROPORTION

$\uparrow a \quad \alpha \frac{1}{b} \downarrow \stackrel{\rightharpoonup}{\longrightarrow} \times b_{1}=a_{2} \times b_{2}$ never applicable
$a=\frac{k}{b}$ $a \times b=k$ \longrightarrow unitary method.

CHAIN RULE
m
$\longrightarrow \quad x \times y=c$
30

20
$\left(\begin{array}{c}d \\ 15 \\ -x\end{array}\right)$

l	b	h
40	60	90
50	45	80

$\frac{D P}{\frac{a}{b}}=k$
$\begin{array}{ccccc}d \uparrow & m \uparrow \downarrow & l \uparrow & b & h \uparrow \\ (15) & 40 & 60 & 90 & \frac{I p}{a \times b}=k \\ 20 & 50 & 45 & 80\end{array}$

$$
\frac{15 \times 30}{40 \times 60 \times 90}=\frac{x \times 20}{50 \times 45 \times 80}
$$

MOHIT CHOUKSEY

(1.) R_{30}

R	S
30	20

valies proportionately \rightarrow graphs

- Tarowth

Gorwh of a single milrobe sulviving human immunity within 24 hus of entering
 i) $-\downarrow \frac{1}{t}$ Toxsity (milligram of Mic req.)

$\frac{P q \text { no. }}{50}$
Q7 $\quad \frac{a}{b}=\frac{b}{c}<\frac{36}{48}=\frac{48}{n}$
Q3 $\longrightarrow 25 p \rightarrow \frac{1}{5 m}$ rs

$$
\begin{array}{ll}
10 p \rightarrow \frac{1}{10} r s=61 \quad Q 9 & 0.72 .8 \\
M P=\sqrt{0.7 \times 2.8}
\end{array}
$$

Q6

$$
\frac{a}{b}=\frac{c}{d}
$$

$$
\begin{gathered}
\frac{S_{\text {monthas }}}{T_{B} \times} \frac{5 x}{\delta x}=\frac{1}{2} \\
T_{B}=10 \text { months }
\end{gathered}
$$

Q

MOHIT CHOUKSEY

$$
\frac{Q}{5} \frac{\text { cate }}{\frac{2017}{2 w}}
$$

$$
\begin{aligned}
& S=\frac{D}{t} \\
& \text { D) } \frac{1 \mathrm{~km}}{\mathrm{hr}}=\frac{1000 \mathrm{~m}}{60 \mathrm{sec} \times 60 \mathrm{sec}} \\
& =\frac{5}{18} \mathrm{~m} / \mathrm{sec} \\
& (\because D=K) \\
& \uparrow s<\frac{1}{t} \downarrow \\
& s \times t=k \\
& s_{1} \times t_{1}=s_{2} \times t_{2}
\end{aligned}
$$

$$
\frac{S P_{T}}{S P_{C}}=\frac{x}{4 / 3}=\frac{x+L}{2 L / 3} \quad \Rightarrow \frac{2 x=x+L}{\Rightarrow x=L}
$$

$$
\frac{L}{4 / 3}=\frac{3}{1}
$$

other

$$
\frac{L}{S P_{T}}=\frac{L}{4 / 3}=\frac{3}{1}(\because t=k)(\text { एकरताथ })
$$

$$
\text { AVERAGE SPEED } \frac{\text { Total Distance }}{\text { Total time }}
$$

$$
\begin{aligned}
& \text { Arg sp }=\frac{T D}{T T}=\left[\frac{D_{1}+D_{2}+D_{3}}{t_{1}+t_{2}+t_{3}}\right] \\
& {\left[\frac{s_{1} \times t_{1}+s_{2} \times t_{2}+s_{3} \times t_{3}}{t_{1}+t_{2}+t_{3}}\right]}
\end{aligned}
$$

$$
\frac{D_{1}+D_{2}+D_{3}}{\left(\frac{D_{1}}{S_{1}}+\frac{D_{2}}{S_{2}}+\frac{D_{3}}{S_{3}}\right)}
$$

$$
\begin{aligned}
& t(\operatorname{secs}) \\
& \text { Average speed }=\frac{T D}{T T} \rightarrow \frac{\text { Area under any (s-t) graph }}{(T T)} . \\
& \text { Arsp }=\frac{50}{15}=30 \overline{3}(\mathrm{~m} / \mathrm{s}) \text { (during entire joulney) }
\end{aligned}
$$

$\frac{Q 34}{p q 72}$

(34)

$$
\overline{\left(\frac{60}{60}+30 / 30+30 / 10\right) \mathrm{hs}}=24 \mathrm{kmph}
$$

(40) $\frac{(8+6+16) \mathrm{km}}{(1 / 4+1 / 4+1 / 4) \mathrm{hr}}=\frac{30 \mathrm{~km}}{3 / 4^{\mathrm{hr}}}=40 \mathrm{kmph}$

Q154

127

SIR

$$
5 \times \frac{8 \mathrm{~m}}{\min }=\frac{40 \mathrm{~m}}{\mathrm{~min}}
$$

$$
\frac{4 \times \sin }{\min }=\frac{20 \mathrm{~m}}{\min }
$$

$$
\begin{array}{ll}
R S & =\frac{400}{((6 y-20) \mathrm{m} / \mathrm{min}}=2 \mathrm{mins} \\
U K S E \\
\text { min }
\end{array}
$$

MOHIT CHOUKSE $(4 \varphi-20) \mathrm{m} / \mathrm{min}$

PI ${ }^{54}$

Bird Remain in here and do rok fro motion in ans

$$
\begin{array}{r}
R S=\frac{480 \mathrm{~km}}{(70+50) \frac{\mathrm{km}}{\mathrm{hs}}}=\frac{489}{12 p}=4 \mathrm{hr}_{2} \cdot \frac{\mathrm{kms}}{\mathrm{hs}} 100 \times 4 \mathrm{hs}=\frac{400}{\mathrm{~km}} \\
D B=S p_{B} \times t \\
=400 \mathrm{kms}
\end{array}
$$

Before meeting
x, y are time taken afters
meeting.

$$
\begin{aligned}
& S P_{A} \times t=\widehat{A C} \\
& S P_{B} \times t=B C
\end{aligned}
$$

After meeting A goes $C B$ in/ x 'his,

$$
S_{P_{A}}=\frac{C B L}{x}=\frac{S_{P B} \times t}{x}
$$

B goes $C A$ in ' y 'his,'

$$
\begin{equation*}
S P_{B}=\frac{A \stackrel{C}{C}}{y}=\frac{S P_{A} \times t}{y} \tag{2}
\end{equation*}
$$

MOHIT CHOUKSEY

RACES. , pure application of Ratio/motharg but
A beats B by 10 m in a 100 m race.

$$
\left[\frac{S_{A}}{S_{B}}=\frac{100}{90}\right](\because t=k)
$$

Q A finishes 12 m ahead of B and 18 m ahead of C. While B finishes 8 m ahead of c. then the length of the race. $\quad 36,48,60$, $7 \frac{d}{2}$

Scanned by CamScanner

Time taken for meeting @ start point for the first time

$$
\begin{align*}
& \operatorname{LCM}\left(t_{A_{1}}, t_{B_{1}}\right) \\
& \operatorname{LCM}\left(\frac{\text { circumference }}{S_{P_{A}}}, \frac{\text { circus }}{S P_{B}}\right) \\
& \operatorname{LCM}\left(\frac{30}{15}+\frac{30}{10}\right)=6 \text { sec } \\
& \text { @ secs } \\
& D_{A}=15 \times 6=90 \mathrm{~m}=3 \mathrm{~s} \\
& D_{B}=10 \times 6=60 \mathrm{~m}=2 h \\
& \text { (a) } 12 \text { es } \\
& \left.\begin{array}{l}
D_{A}=15 \times 12=6 \mathrm{~s} \\
D_{B}=4 r
\end{array}\right\}
\end{align*}
$$

the
(2.) Time taken for meeting for 1 st time
d) Pg 53
(i) x

$$
\begin{aligned}
& A \rightarrow 6 \mathrm{~km} / \mathrm{hs} \\
& B \rightarrow 12 \mathrm{~km} / \mathrm{hs} \\
& \begin{aligned}
\frac{6 \mathrm{~km}}{(6+12) \frac{\mathrm{km}}{\mathrm{hs}}} & =\frac{1}{3} \mathrm{hs} \\
& \approx 20 \mathrm{~min}
\end{aligned}
\end{aligned}
$$

$$
\left.\begin{array}{l}
30 \\
18
\end{array}\right)
$$

(8) ©SP

$$
\operatorname{LcM}\left(\frac{600}{15}, \frac{600}{20}\right) \frac{m}{m / s e c}=\frac{600}{5}=120 \mathrm{sec} \approx 2 \mathrm{mins}^{2}
$$

Ate Time taken for meeting at the start point is - form independent of the dirk. of the runnels.

i
$1 / 5^{\text {she }}$ formulae

$$
\begin{aligned}
& \text { if } 3 \text { Rumnerso.CM }\left(t_{A}, t_{B}, t_{C}\right) \\
& \text { LCM }\left[\frac{\text { cire }}{(A \pm B)}, \frac{\text { circe }}{(B \pm C}\right]
\end{aligned}
$$

Q
Time taken \rightarrow train passes poll $\rightarrow \frac{L(1) C \text { train }}{S P O}$

$$
\begin{aligned}
& \rightarrow 1-p \text { platform } \rightarrow \frac{L_{T}+L_{p}<\text { platfor }}{S P_{T}} \\
& \text {-1- to cos each } \\
& 2 \text { trains } \rightarrow \text { othel } \rightarrow \frac{L_{1}+L_{2}}{S P_{1} \pm S P_{2}}
\end{aligned}
$$

Q

$$
\frac{L_{2}}{s_{2}-\left(s_{1} \bigcirc m\right)}
$$

*

$$
\begin{aligned}
& \downarrow s p=(b+c) \rightarrow \text { time less } \\
& \uparrow s p=(b-c) \rightarrow \text { time nore. } \\
& \frac{20-c}{20+c}=\frac{2}{3} \\
& c=4
\end{aligned}
$$

$\lg \frac{33}{82}$
$22 \square$

$$
\begin{aligned}
& \frac{D}{\downarrow(20+c)}=\frac{1}{3} \\
& \frac{D}{\uparrow(20-c)}=\frac{1}{2}
\end{aligned}
$$

$$
\text { ()) } \left.\frac{0.74}{P 977} \quad x=8 \mathrm{~km} / \mathrm{hl} \quad x \quad x-y=\frac{D}{3 t} \right\rvert\, x+y=\frac{D}{t} \quad \frac{\frac{D}{3 t}}{\frac{B}{t}}
$$

$$
\begin{aligned}
& \frac{x-y=(x+y)}{3(x-y)=(x+y)} \\
& 3 x-3 y=x+y \\
& 24-3 y=8+y \\
& 16=4 y \\
& y=4 .
\end{aligned}
$$

SIR

$$
\begin{aligned}
& \frac{D}{\sqrt{(8+c)}}=t \\
& \frac{D}{\downarrow(8-c)}=3 t \\
& \frac{8-c}{8+c}=3
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P q 84}{29} \frac{840}{v}-\frac{840}{v+10}=2 \\
& \text { weophows } \\
& \text { put } r=60 \quad \frac{840}{6 \phi}-\frac{84}{7}=2 \\
& 14-12=2
\end{aligned}
$$

MOHIT CHOUKSEY

CLOCK
Clock is an application of circular Race b/w heres hand and minute hand.

Min. hand
60 min $\rightarrow 1$ round $\rightarrow 360^{\circ}$ (for RG of $\left(51_{2}^{\circ}\right)$ Min hand goes (6). $1 \mathrm{~min} \rightarrow \frac{1}{360}$ round $\rightarrow\left(6^{\circ}\right)$ for $R G$ of $\left(1^{\circ}\right) \mathrm{Min}$ hand $\left.\rightarrow\left(\frac{12}{11}\right)^{\circ}\right)$

Her, hand

$$
\begin{aligned}
& 12 \mathrm{hrs} \rightarrow 360^{\circ} \\
& (60 \mathrm{~min}) \approx 1 \mathrm{hr} \rightarrow 30^{\circ} \\
& 1 \mathrm{~min} \rightarrow(1 / 2)^{\circ}
\end{aligned} \quad \begin{aligned}
& 51 / 2 \longrightarrow 6 \\
& \begin{array}{l}
\text { Relative }(R G)=\left(5^{1} / 2\right)^{\circ} \\
\text { gain which }
\end{array}
\end{aligned} \begin{array}{ll}
11 & \rightarrow 6 \\
11 &
\end{array}
$$

the Min.
hand over
H. hand

Formuales

$$
\begin{aligned}
& (x) k(x+1) \longleftarrow 0^{\prime} \text { clock } \\
& 5 x \times \frac{12}{11} \longleftarrow \text { coincidence } \\
& \begin{array}{c}
(5 x \pm 15) \frac{12}{11} \longleftarrow \text { opposite Rt angle } \\
(5 x \pm 30) \frac{12}{11} \longleftarrow \text { st end opposite } \\
x \geqslant 6 \\
x<6(t)
\end{array}
\end{aligned}
$$

Q if $b / w 7$ and 8

$$
\begin{aligned}
& (5 \times 7-30) \\
& 35-30
\end{aligned} 5 \times \frac{12}{11}=\frac{60}{11}=\frac{5 \frac{5}{11}}{7: 5 \frac{5}{11}}
$$

* $6^{\circ} \longrightarrow 1$ min

$$
\begin{aligned}
& 10 \longrightarrow(1 / 6) m \\
& {\left[5 x+\left(\frac{0^{6}}{6}\right)_{m}\left[\frac{12}{11}<\cos n^{\frac{12}{}} 0^{\circ}\right.\right.} \\
& \left.\left[5 x \pm\left(\frac{90^{\circ}}{6}\right)^{6}\right] \frac{12}{11}\right] \text { opp } 180^{\circ} \\
& x \geqslant 6(-) \\
& x \leqslant 6(t)
\end{aligned}
$$

*

$$
\left[5 x \pm\left(\frac{D^{0}}{6}\right)\right] \times \frac{12}{11}
$$

Q What is the angle b/w the minute hand and hour hand at $9: 25$?
Sol

$\left[5 x+\left(\frac{D^{\circ}}{6}\right)\right] \times \frac{12}{11}=2511$

MOHIT CHOUKSEY

Aptitude and Reasoning
CAT - 30 to 35 QU:
Band C (Permutation \& Combination).

$10 \times 12=120$ ways

(2) A

$A \rightarrow C$
6 ways $+3=9$ ways (3×3) the meaning of question.
hidden in question. additive Rule cause applicab!
qu $^{n \cdot \rightarrow}$ Leiden or given or
available
More than one thing
\rightarrow and available

$$
10 \times 12=120
$$

* Arrangement

$$
\begin{aligned}
& { }^{n} P_{r}=\frac{n!}{(n-r)!} \\
& 6 \text { chairs, } 6 \text { members. } \\
& \text { Ex:- } 6 \times 5 \times 4 \times 3 \times 2 \times 1 \\
& 6 P_{6}=\frac{6!}{0!}=720 \text { ways } \\
& 6 P_{4}=\frac{6!}{2!}=360 \text { ways } \\
& \text { Q.) }\{a, b, c\} \rightarrow\{a b, b c, c a\} \\
& \text { seven. } \\
& { }^{n} C_{r}=\frac{n!}{(n-r)!\times r!} \Rightarrow{ }^{3} C_{2}=\frac{3!}{1!\times 2!}=3 w \text { ass } . \\
& \text { MOHIT CHOUKSEY }
\end{aligned}
$$

Q 12 people (handshake)

$$
{ }^{12} C_{2}=\frac{12!}{10!\times 2!}=\frac{12 \times 11}{2}=66 \quad{ }^{n} C_{2}=\frac{n(n-1)}{2}
$$

Q 12 points (str. line)

$$
{ }^{12} C_{2}=66
$$

* ${ }^{n} C_{r}={ }^{n} C_{n-r} \rightarrow E x:-{ }^{5} C_{2}={ }^{5} C_{3}$

$$
{ }^{8} C_{5}=8 C_{3}
$$

Qi) AU 6 digited natural no's are being formed from 1st 6 natural no's without repetition. ($w \cdot R^{n}$). How many such no's are divisible by 4?
Q2.) How many 4 digit $n \theta$. can be formed with 10 digits $0,1, \ldots$. [Gate Q.2015] ... 9. If no number can start rend ind [Qn.105] repeatition are not allowed?

Q3.) given digits $2,2,3,3,3,4,4,4,4$. How many distinct (Q4 Pg 69) 4 digit no's greater than 3000 can be formed?
(Gate 2010)
(a) 50
(b) 51
(C) 52
(d) 54 .

Q4.) All 4 digited natural no.'s are being formed from 1st five natural numbers. How many such no's are divisible by 4.

$$
\frac{\text { Me }}{\text { Sol. }} \frac{1}{x} \frac{2}{x} \times \frac{3}{x} \times \frac{2}{1,2,3,4, ~ 5,6}
$$

$$
\begin{equation*}
0, \underbrace{1,2,3,4,5,6,7,8,9} \underbrace{56} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
4 \times 312 \tag{4536}
\end{equation*}
$$

$$
\begin{equation*}
2 \frac{\pi}{2} \frac{6}{5103} \frac{520 r}{1,2,3,45} \tag{3}
\end{equation*}
$$

(4) $5 \leq 1$
$\underline{\sin } \rightarrow$ (1) 192
(2) 4536
(3) 51
(4) 125
explanations
(1)

$$
\Rightarrow 4 \times 3 \times 2 \times 1 \times 8=192 \text { ways }
$$

(2) $\frac{9}{\pi} \times \frac{9}{\uparrow} \times \frac{8}{1} \times \frac{7}{(0.9)^{r}}=4536$
9) $(0 \times 9)^{r}\left(0^{-9}\right)^{(0.9)^{2}}$
other way

$$
\begin{array}{llll}
\text { (2) } & \text { (3) } & \text { (3) } & =\frac{54}{5} \\
3 / 4 & 2 & 2 / 3 / 4 & 2 / 3 / 4 \\
3 & 4
\end{array}
$$

Q There are 12 towns equally to be divided into 4 zones. each town is connected to every other town in the same zone by 3 direct lines and each toto is each town is connected to every other town outside the zone by single direct line.
How many lines are to be laid/built?

Sol

$$
\begin{array}{r}
1,2,3,4,5,6,7,8,9,10 \\
, 11,12
\end{array}
$$

Me

3 (81)
(81)

8
8
8
8
MOHIT CHOUKSEY
(3.) $2,2,3,3,3,4,4,4,4$

(3222) but two 2 's are allowed invalidno. also 33330^{2}

Total no. $=54-3=51$ no!'s Ans (valid)

SIR

Now

Now

Now

$$
\left|\begin{array}{c}
z_{4} \\
\cdot \alpha \\
\cdot \beta \cdot \gamma
\end{array}\right|
$$

Q.) 10 identical Balls are to be distributed among 3 friends. In how many ways can the distribution be done?

24

- α

36 lines
(all internal connections established)
$\cdot \beta \cdot \gamma$

(extemal com ins)

$$
\begin{aligned}
& +18 \text { lines } \\
& (P \rightarrow x y z \alpha \beta \gamma) \\
& (Q \rightarrow-,,-) \\
& (R \rightarrow-,-)
\end{aligned}
$$

$$
+9 \text { lines }
$$

$$
(x \rightarrow \alpha \beta \gamma)
$$

$$
(y \rightarrow \alpha, \beta, y)
$$

$$
(z \rightarrow \alpha, \beta, \gamma)
$$

Sol.> whole no. Sola.

shortent
(1) $n \rightarrow$ idential objects
(1) $(n+r-1)$

$$
C(h-1)^{2}
$$

(2)
whole no.soln. \rightarrow means can give Opal also.
$n \rightarrow$ identical objects
$r \rightarrow$ no. of people.
here sol

$$
\begin{aligned}
& (10+3-1) C_{(3-1)} \\
& ={ }^{12} C_{2}=\frac{12 \times 11}{2}=66 .
\end{aligned}
$$

Now
Natural No. Sol.

MOHIT CHOUKSEY

Q 15 identical Balls are to be distributed among 4 friends (A, B, C, D) such that A should get atheast 3 bolls, B atteast 2 , C atleast 1. Tn how many ways can the distribution be done

Sol

$$
\begin{gather*}
A+B+\underset{3^{n}}{A \rightarrow}+D_{0}=15 \tag{9}\\
A+B+C+D=9 \\
9+4-1 C_{4-1} \quad{ }^{12} C_{3} \\
\text { MOHIT CHOUKSEY }
\end{gather*}
$$

* GEOMETRICAL P and C :-

12 points st. lines
${ }^{12} \mathrm{C}_{2}$) (if no points are collinear) $\left({ }^{n} \mathrm{C}_{2}\right)$
${ }_{0} 0^{0^{\circ}}{ }^{12} C_{2}$ (if no points are collinear) $-{ }^{5} C_{2}$ (5points $+1\left(\begin{array}{ccc}-0 & 0 & 0 \\ \text { one line } \\ \text { Possible }\end{array}\right)$ possible
12 points
$-0^{\circ} 0^{\circ}$
Δ 's
${ }^{12} C_{3}$) (if no points ane collinear) - ${ }^{5} C_{3}$ (points $\begin{aligned} & \text { wollinearity })\end{aligned}$
${ }^{4}{ }^{4}{ }_{3}$

$Q>$ If no of diagonals of a n sided polygon is 50% more than its no. of sides. then the polygon is -
801

$$
\begin{aligned}
& \because \quad 1.5 \not y=\frac{\not \mu(n-3)}{2} \\
& n-3=3 \\
& n=6
\end{aligned} \text { sides, } \quad \begin{gathered}
5 \\
\downarrow \\
6
\end{gathered}
$$

$$
n=6 \rightarrow \text { sides, } 9 \text { diagonals }
$$

how many Δ 's can we get from these 21 pts.

Sol

$$
\begin{gathered}
{ }^{21} C_{3}-{ }^{10} C_{10}-{ }^{11} C_{1 p} \\
1330-1-1
\end{gathered}
$$

$$
\frac{\frac{{ }^{11} C_{2} \times 10}{1}+{ }^{{ }^{10} C_{2} \times 11}}{{ }^{21} C_{3}-{ }^{10} C_{3}-{ }^{11} C_{3}=1045}=1045
$$

* Tall 3 should not from the same line?

MOHIT CHOUKSEY

Chess Board
${ }_{9} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{2}=1296$ Rectangles
1). Rectangles $\xrightarrow[(n \times n)]{\leftrightarrows \overline{C C}_{2}} \times 9 C_{2} \hat{\jmath} 1296 \quad \sum n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=1296$
2) Squares $\longrightarrow 204 \Sigma n^{2}=\frac{n(n+1)(2 n+1)}{2}=204$
3) different types of

Rectangles

1	
2	
3	
4	

Orientation differ.

area k perimeter same \rightarrow then same type
4×1
$P=10 \quad P=10$
$A=4 . \quad A=10$
hence same Rectangle.

* Linear Arrangeneent/Permutation:-

arculal Ph / Circular arrangement.

to be held
Q.) A couple invited their 10 friends to a dinner party, acis a circular dinning table having 12 chairs such that there have to be exactly 1 friend b/w the couple.
Sol

SIR

H, ω can interchange

Q.) all 5 digited natural No.'s are being formed from 1 st five natural no's without repetition. What is sum ere of all of those no's

$$
\begin{aligned}
& (n-1)!\times \underbrace{\times 1111}(\Sigma d) \\
& (5-1)!\times \underset{ }{11111}(1+2+3+4+5) \\
& 4!\times 1111 \times 15
\end{aligned}
$$

Q vertex of a octagon are joined and Δ s are formed. How many Δ 's ane there whose vertex belongs to the vertex of octagon l but none of its sides should belong tot the side of Sol. SIR

$$
\frac{n=6}{\text { two }}
$$

$$
\left\{\begin{array}{ccc}
n^{2}-\left(n^{2}-2\right) \\
36-34 \\
2
\end{array}\right\} \begin{array}{ll}
0 & 6 \\
\downarrow & \downarrow \\
5 & 2
\end{array}
$$

$$
\begin{aligned}
& T(\Delta) \Rightarrow^{8} C_{3} \\
& \left(\begin{array}{l}
\text { no } \\
\text { corneal }
\end{array}\right. \\
& T(\Delta)=\Delta(1) \\
& \downarrow \\
& \text { common } \\
& \text { side } \\
& +\Delta(2)(C D E) \\
& +\Delta(0) \rightarrow H C F \\
& 8 C_{3}=\Delta(1)+\Delta(2) \\
& +\frac{\Delta(0}{?}
\end{aligned}
$$

MOHIT CHOUKSEY

021012016
PROBABILITY

Classical Def n:-

Sample space $=\{1,2,3,4,5,6\}$
in case of a dice)
$s s=\{H, T\}$
unbiased Events \rightarrow every event (equally likely)

$$
\begin{array}{c|c}
P(1)=1 / 6 & P(H)=1 / 2 \\
P(2)=1 / 6 & P(T)=1 / 2 \\
P(3)=1 / 6 & \\
\vdots & \\
P(6)=1 / 6 &
\end{array}
$$

MOHIT CHOUKSEY

Mutually exclusive events
and
Independent Events

$$
\left\{\frac{\text { Next Page }}{?}\right\}
$$

or Mutually Exclusive events are events where happening of one eventuarankees non-happening of the other.
means $A \rightarrow$ happen, $B \rightarrow$ not happen.
$A, B \rightarrow$ disjoint sets

$$
P(A \cap B)=0
$$

for $M \cdot E \cdot E$.
$\frac{\text { Additive }}{\text { Rule } P(A \cup B)}=P(A)+P(B)-P(A \cap B) \rightarrow 0$
only one of the events happen @time.
 English identyfing key-

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)
$$

Q \rightarrow Dice
r Independent Events are Events where more than one event can happened at a time without influencing the result of each other.
Ex:- Coin and dice is tossed simultaneously. and $P(t)$ tossed $\rightarrow($ tail $)$
pule/ multiply

$$
\begin{aligned}
& 2 / 6 \times 1 / 2=1 / 6 \\
& P(A) \times P(B) \times P(C)
\end{aligned}
$$

$Q . P(A)=60 \%$ A speaks Truth in 60% cases.

$$
P(B)=75 \%
$$

while answering the same qu. in either "Yes" or "No" they are likely to fight with each other in what $\%$ chances.
Solis

$$
\begin{aligned}
& P(A)=3 / 5, P(\bar{A})=2 / 5 \\
& P(B)=3 / 4, P(\bar{B})=1 / 4
\end{aligned}
$$

MOHIT CHOUKS

$$
\begin{aligned}
& A \times \bar{B}+B \times \bar{A} \\
& \frac{3}{5} \times \frac{1}{4}+\frac{3}{4} \times \frac{2}{5} \\
& =\frac{9}{20} \cong \frac{45}{100} \approx 45 \%
\end{aligned}
$$

Q) These au 2 vacancies for which the husband and wife applied, $P(h)=1 / 7 \rightarrow$ Probability of husband gets the job.

$$
P(\omega)=1 / 5
$$

only one gets the job	both	None	atleast one	
$?$	$?$	$?$	$?$	

Q.) X is randomly choosen from 1 st 100 natural no., what is the probability that chooser x satisfies the inequality
a) $\frac{28}{50}$
b) $\frac{29}{50}$
c) $\frac{59}{100}$
d) $30 / 50$
Q.) A and B decided to meet b / w and $7 \mathrm{p} . \mathrm{m}$. on $14^{\text {th }}$ feer. 2017. What is the probability that they will meet provided one cannot wait for other for more than 20 minutes?
Q.) Gate Q^{n}.

Sol: (1)

, S|R-(1) $p(n)=1 / 7, p(\bar{n})=6 / 7$
$P(\omega)=1 / 5 ; P(\bar{\omega})=4 / 5$

$1=\frac{10 / 35+1 / 35}{\underset{11 / 35}{\downarrow}+24 / 35}$

$\frac{(x-40)(x-70)}{(x-30)}<0 \quad$ similarity
signs can be putted on the no. line in alternate fashion.

$$
\frac{\text { far. chances }}{\text { Total chances }}=\frac{58}{100}=29 / 50^{\circ}
$$

(3) Time \longrightarrow Real No.

MOHIT
CHOUKSEY ∞ no. of values b/w $6 \& 7$.
$\frac{\text { faromable chances }}{\text { Total chances }}=\frac{\infty}{\infty}=\frac{f(A)}{T(A)}$ faromable area Total chances $\underbrace{\infty}$ Total area

unfar Area $=1600$ mits.
$\begin{aligned} \text { Total area } T A= & \overline{60 \times 60}=3600 \\ \text { faromable area } f A= & 3600-(800 \times 2) \\ = & 2000\end{aligned}$

$$
\frac{f(A)}{T(A)}=\frac{2000}{60 \times 60}=\frac{20}{36}
$$

(4)

Redrow

Maths behind it

$$
\begin{aligned}
& 0 \leqslant x \leqslant 60 \\
& 0 \leqslant y \leqslant 60 \\
& |x-y| \leqslant 20\} f(A)
\end{aligned}
$$

$$
x-y=20
$$

$$
\text { if } x-y \leq 20
$$

if y comes first,

$$
y-x=20
$$

$\begin{aligned} & y-x \leq 20 \rightarrow \text { To satisfy this in equality. } \\ & \text { we hare to move towards }\end{aligned}$ origin.

$D_{0} \longrightarrow$ (33) (41) $\operatorname{Pg} 72$
(33)
not divisible by 7

2 digit

$$
7 \times 7 \quad 49
$$

$7^{\prime}, 14,2^{\prime} 1,2 \overline{3}, 35,4,2,4, \overline{9}, 56,6 \overline{3}, 7 \overline{0}$,
$77,84,9!, 908$

$$
\text { SIR }[1-100] \div \text { by } 7
$$

$$
\frac{100}{\frac{10}{7}=14[14,21, \ldots 98]}
$$

$$
\text { div. by } 7=(14-1)=\text { (13) }
$$

$$
\frac{f_{c}}{T C}=\frac{77}{90}
$$

MOHIT CHOUKSEY

* Sample space $($ dice $)=\{1,2,3, \ldots 6\}$

$$
\begin{aligned}
& P \text { (even })=3 / 6 \longrightarrow\{2,4,6\} \\
& P(\text { prime })=3 / 6 \longrightarrow\{2,3,5\}
\end{aligned}
$$

Q.) (conditional Probability Based).

A dice is thrown at raudorn. What is the probability of getting a prime no. on the dice provided the dice had shown an even number.
Sol

$$
\begin{aligned}
& \& s_{\text {new }}=[2,4,6] \\
& P(\text { prime })=P\left(\frac{\text { prime }}{\text { even }}\right)=\frac{1}{3}
\end{aligned}
$$

Pg $7120, Y$

$$
x \longrightarrow 60 \% \longrightarrow 96 \% \text { reliable }
$$

$$
0.576 \quad 0.288
$$ already shower.

$$
96 / 100
$$

$$
y \rightarrow 40 \% \longrightarrow 72 \%-9 \%-
$$

$$
\text { T.S.A. }(100)
$$

$$
x(60)^{2}
$$

$$
\begin{gathered}
x_{R}=0.96 \text { of } 60 \\
x_{R}=57.6
\end{gathered}
$$

$$
\rightarrow y(40)
$$

$$
y_{R_{1}}=0.72 \text { of } 40
$$

MOHIT CHOUKSEY
(53) $\frac{10}{100} \rightarrow \mathrm{HIV}^{+}$

$$
\begin{aligned}
& \mathrm{HIV}+\longrightarrow 95 \%(\text { Time }) \\
& \mathrm{HIV}^{-} \rightarrow 891(-,-)
\end{aligned}
$$

SIR

$$
\left(\begin{array}{cc}
\frac{0.1 \times 0.95}{(0.1 \times 0.95)+(0.9 \times 0.11)} \\
\uparrow & \uparrow \uparrow_{\text {ave }}
\end{array}\right)
$$

0.4896 Ans

PqS4
(5)

$$
\begin{aligned}
& P(2)=1 \\
& P(3)=2 \\
& P(4)=3 \\
& P(5)=4 \\
& P(6)=5 \\
& P(7)=6 \\
& P(8)=5 \\
& P(9)=4 \\
& P(10)=3 \\
& P(11)=2 \\
& P(12)=1
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
1,6 \\
2,5 \\
3,4
\end{array}\right\} \\
& \left\{\begin{array}{l}
6,1 \\
5,2 \\
4,3
\end{array}\right\}
\end{aligned}
$$

- QT 4 times

Pg 54
(6) $\frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} \times \frac{1}{6}$.

SIR

$$
=\left(\text { None of them } \frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} \times \frac{1}{6}\right. \text {. }
$$

Qu is not solved
$36](Q$ n. is solved $\Rightarrow 1-(\bar{A} \times \bar{B} \times \bar{C} \times \bar{D})$. Solves Question
All of them solves the $q u \cdot\} \Rightarrow A \times B \times C \times D$.

(6/11)
MOHIT CHOUKSEY

Q 10 penalty shootouts.
${ }^{10} \mathrm{C}_{4} \rightarrow$ chances in which goal happens.

$$
\begin{aligned}
& { }^{10} \mathrm{C}_{4} \cdot\left(\underset{L}{\text { s })^{4}} \text { success }{ }^{6} \mathrm{C}_{6}(f)^{6}\right. \\
& \text { Pg 90 } \\
& \text { (1) } 77 \\
& { }^{10} C_{6} \times \\
& 0.2508
\end{aligned}
$$

Pg 54
(10) $\frac{0.04}{100}=1 / 25$

Pg st
(1) $n C_{2}=h \cdot$ shakes

$$
\frac{n(n-1)}{2}=153
$$

(18) $\sqrt{ }$
(2)

* LOGICAL REASONING

4 Rules \rightarrow Rule $1 \rightarrow$ draw all possibilities/(Cases).
Rule $2 \rightarrow$ for a statement to be True, it have to be true in all the cases.
Rule $3 \rightarrow$ If a statement is false even in one of the case, then it will be considered false forever.
Rule $4 \rightarrow$ Try to proof a statement false as eauly as possible.
Rules/Gencral $\rightarrow \underbrace{\text { Read dirn's carefully } f}$

QR

$4)$

(i.) $>$
(ii) $>$
(5) ${ }^{m e}$
(i) x

(ii)
(b) ${ }^{-}$
(6)

(i.) r
(c)
(ii) $\sqrt{ }$
(7) 0^{R}

SIR
(5)

(d) ${ }^{-}$
(6)

(1) x
(2) $>$
(c)

MOHIT CHOUKSEY

MOHIT CHOUKSEY

No inform" about Manager and Executive

(i.) $>$ (Bullshit)

(ii) $>\rightarrow$
(c)

Pg no. 57

8 to 9

(ii) $1,2,3,4,5,6$

$$
\begin{aligned}
& \qquad(H) \\
& \text { Horizontal }=E^{+}, \omega^{-} \\
& \frac{\text { vertical }}{(V)}=N^{+}, S^{-}
\end{aligned}
$$

Apply pythagoras.

$$
D=\sqrt{H^{2}+V^{2}}
$$

Q.) Person goes 40 m North take a Right tun goes 60 m takes a left Tull 50 m and takes another $\because 11-45 \mathrm{~m} \cdots$

$$
\begin{aligned}
& H=|60+45-95|=10 \\
& V=|40+50-70|=20
\end{aligned}
$$

$$
\begin{aligned}
& D=\sqrt{70^{2}+20^{2}} \\
& D=\sqrt{500} \\
& D=10 \sqrt{5} \text { Ans } \therefore
\end{aligned}
$$

(1:) Isosceles Right $\angle \Delta$

$$
\begin{gathered}
\sin 30^{\circ}=\frac{a}{h} \\
\frac{1}{2}=a / h \\
h=2 a
\end{gathered}
$$

$$
\sqrt{a^{2}+?^{2}}=(2 a)^{2}
$$

$$
a^{2}+?=2 a
$$

b

$$
a \frac{2 a}{\sqrt{3} a}
$$

$\frac{\text { Pq } 74}{Q 52}$
$+\sqrt{2}+1-x+1$ $+1-\sqrt{2}+1-x+x$

2

SIR

(49) $\rightarrow \mathrm{H} \cdot \mathrm{W}$.
(C) v

MOHIT CHOUKSEY

- $17 / 11 / 2016$

$\%$ change $=\left[\frac{(F v-I v}{I v}\right] \times 100$
$F v \rightarrow$ final value
$I v \rightarrow$ initial value
if $\%$ change $\rightarrow+V e \rightarrow F V>I v \rightarrow \% \uparrow \rightarrow$ growth rate -ve $\rightarrow \rightarrow ル<\rightarrow \longrightarrow-\downarrow \rightarrow$ decline rate
${ }_{\text {Ex }}^{\text {E) }} 40 \longrightarrow 20 \Rightarrow \frac{-2 \phi}{4 \phi}=-\frac{1}{2} \times 100 \approx-50 \% \downarrow$

1) 40 -

$$
\longrightarrow \frac{10}{49}=\frac{1}{4} \quad \approx 25 \% \uparrow
$$

(c)
$40 \longrightarrow 5 s \longrightarrow \frac{15}{40}=\frac{3}{8} \approx 37.5 \% \uparrow$
$\%$ change $\max m \longrightarrow \mid$ change
$\% \uparrow$ ins maxi. \longrightarrow tie value in account.
$\% \downarrow$ is $\operatorname{maxm} \longrightarrow$-ve value in account.

Ex:- $\frac{2015}{50} \quad \frac{2016}{60} \quad \frac{2017}{72}$

$$
-10 / 5 \phi=-1 / 5 \approx 20 \% \uparrow
$$

$$
\begin{aligned}
& 50 \times 1.2=60 \times 1.2=72 \\
& \text { so } 40 \quad 12 \\
& 50 \times 0.8=40 \times 0.8=32
\end{aligned}
$$

MOHIT CHOUKSEY

인
8
-
$=$
$\begin{aligned} \frac{90^{\circ}}{360^{\circ}} & =1 / 4 \text { of } 10,000=25 \% \\ 100 \% & \rightarrow 360^{\circ} \\ 1 \% & \Rightarrow \frac{18}{5} \text { or } 3.6^{\circ} \\ 360^{\circ} & \rightarrow 100 \% \\ 10 & \rightarrow 5 / 18 \%\end{aligned}$

Pg $58 \mathrm{CH} \mathrm{\# 13}$
$\left[\frac{63^{\circ}-36^{\circ}}{360}\right]$

$1 \% \approx 4$ Thousand

- $4 \% T C P \approx 16 \mathrm{Th}$

6 TCP $=4$ lakh
(TSP $=4 \times 1.3=\frac{5.242}{5500}$
lupy
(i0)
(11) ${ }^{2}$
(12)
(15) Total quantity = 5 lakntounes Total Revenues $=250$ Crore

Ratio of Revencen

$1 / \mathrm{kg}$
 $4 / \mathrm{kg}$

(15)SIR

200 muits
SIB
$\therefore 15$ of TCP $=4.5$ lakh
$\checkmark T C P_{2012}=30 \mathrm{lakh}$
Profit $2012=10$ lakh
T.S.P. 2012 40lakh
$\begin{gathered}\text { s.P./per } \\ \text { unit }\end{gathered}=\frac{40 \times 10^{5}}{200}=20,000$
Pgno. 60
Q18
$\frac{\text { M } 2008}{\text { F2008 }}=$
assume $F_{2008}=100 \mathrm{r}\left(\begin{array}{l}\text { Bec.ratiois } \\ \text { fixed }\end{array}\right.$
and $\quad M_{2008}=250 \mathrm{~F}$
$\frac{M_{2009}}{F_{2009}}=\frac{600}{200}$
$\left(\begin{array}{l}\text { (3) } \\ \mathbb{B e c} \cdot \substack{\text { ratio is } \\ \text { Fixd }}\end{array}\right.$
Finntealue of male
$\frac{606-25 p \leftarrow}{25 \phi}$ initial value of rale

$$
\begin{aligned}
=\frac{35}{25}=\frac{7}{5} & =1.4 \times 100 \\
& =140 \%
\end{aligned}
$$

(19) 2012-2013 \rightarrow GDP $\uparrow 7 \%$ 2012-2013 \rightarrow SOht 60 USD

$$
\frac{\text { SIR }}{\text { Q19 }} \text { aDP before 2012-2013 }
$$

E10г-z10 r rxto dov

MOHIT CHOUKSEY

The percentage of the people older man 35 years cause almost

Sol 8
Extend the Table

	M	F
1	4	T
	0	7
71	3	10
	0	1

Q
(70) $(\underset{\sim}{57} \mid 821841981(66)(33 \mid 871$ (79) (71)

This shows the $\%$ of milk in each sample. of any two samples ale mixed b form new sample then on max. how many distraint pall's of samples will never give a composition of more than 80% milk.

Sol

Q

MOHIT CHOUKSEY

SI/CI
Simple Interest / Compound Interest

(A)

RS $100 @ 10.0 \%$

角 $8 p \rightarrow$ abyss \uparrow
xCI

$$
\begin{aligned}
P_{1}+I_{1} & =A_{1}=P_{2} \\
P+\frac{P R}{100} & =P\left(1+\frac{R}{100}\right)^{\prime}=A_{1}=P_{2} \\
A_{n} & =P\left(1+\frac{R}{100}\right)^{n} \\
C I & =A_{n}-P
\end{aligned}
$$

Amount is compounded. half yearly?

$$
\begin{aligned}
& P_{9}=10 \% \text { per year; } t=2 \text { year } \\
& A_{2}=P\left(1+\frac{5}{100}\right)^{4}
\end{aligned}
$$

$P, R=5 \%$ per half yearly (shy), $t=2 y$

$$
\begin{aligned}
& A_{2}=P\left(1+\frac{2.5}{100}\right)^{8} \\
& *(C I-S I)=P\left(\frac{R}{100}\right)^{2} \\
& *\left(C I-\frac{S I}{3 y I}\right)=P\left(\frac{R}{100}\right)^{3}+3 P\left(\frac{R}{100}\right)^{2} .
\end{aligned}
$$

RD $100 @ 10 \%$

- Qa certain sum of money becomes - 25 times in 48 y's at a S.I.

1 In how many yes will it become 49 times at S.I.?

- Sol

$$
\left.\begin{array}{rl}
\text { Amount } & =P+(\overrightarrow{S I} \\
25 P & =P+(24 P
\end{array}\right)
$$

$$
\left(\frac{P R}{100}\right)^{2} \times \frac{R}{100}=P\left(\frac{R}{100}\right)^{2}
$$

Q Certain sum of money doubles itself in syr at C.I. In how many years will it become 8 times at C.I.
$C I$
' m 'times in ' y ' years

$$
8 P=P\left(1+\frac{R}{100}\right)^{15}
$$

$\left.\begin{array}{l}\frac{Q 49}{279} \\ \text { her } \\ \frac{p 5^{2}}{Q 2} \\ \text { Qt } \\ \text { Qty }\end{array}\right]$

$$
\begin{aligned}
A= & p\left(1+\frac{R}{100}\right)^{n} \\
& p\left(1+\frac{20}{100}\right)^{n}
\end{aligned}
$$

$$
A=(1.2)^{n}
$$

$$
f(n=3)=1.728 \mathrm{P}
$$

$$
f(n=4)=2.07 P
$$

$$
\begin{aligned}
& \left(m^{n}\right) \neg \rightarrow \rightarrow(n x y) \text { years } \\
& 2 \text { times in } 5 \text { years } \\
& 8 \approx 2^{3} \text { (times) in } 3 \times 5=15 \text { yes } \\
& A=P\left(1+\frac{R}{100}\right)^{n} \quad \leadsto 8 P=P\left(1+\frac{R}{100}\right)^{n} \text { is } \\
& 2 \phi p=p\left(1+\frac{R}{100}\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
A & =p\left(1+\frac{R}{100}\right)^{n} \\
2 p & =p\left(1+\frac{R}{100}\right)^{10} \\
2^{1 / 10} & =\left(1+\frac{R}{100}\right)
\end{aligned}
$$

Q2. $\quad A=P+S I$

Tho $5324=P\left(x+\frac{R}{100}\right)^{-3}$

$$
4840=P\left(1+\frac{R}{100}\right)^{2}
$$

Q A large cube was dipped in paint, taken out and thendividedinto 64 equal smaller cubes. how many cubes are painted on 3 sides, 2 sides. 1 side, 0 side.

Q. A large abbe was dipped in paint, taken out and then its lengrn then, how many cuboids are pointed on $3 s, 2 s, 15,0 s$.

Sol

$$
T=(5 \times 4) \times 3=60
$$

$3 s=8 .+$
$2 s=4[(3)+(2)+(1)]=24$.
$1 s=2[(3)+(2)+6]=22$
,$O S=6$

$$
\begin{aligned}
& \frac{\text { Qis9 }}{\text { T.S.A. }}= 6(\text { side })^{2} \\
& 6(4)^{2}
\end{aligned}
$$

MOHIT CHOUKSEY

(121)

- $+,-, x, \div$
$\uparrow \downarrow \times \div$
- Rule on Averages \rightarrow (1) If each and every op r. is $\uparrow, \downarrow, x, \div$ by an constant, then their arithmetic mean is also $\uparrow, \downarrow, x, \div$ by the same constant.
\# Sum of the deviations taken from arithmetic mean is equal to zero.
stand ard deviation $=\sqrt{d_{1}{ }^{2}+d_{2}^{2}+\ldots+d_{n}{ }^{2}}$
D
$\left.\begin{array}{cccc}* & d_{1}=-2 & d_{2}=0 & d_{3}=2 \\ & 1 & 3 & 5\end{array}\right) \bar{x}=3$
Q47 ar
b) arg abreast.
$d x$ avg every.
(b)

$P\left(\alpha^{3} \longrightarrow 95 \%\right.$ ice

MOHIT CHOUKSEY

Sate 2016
(181)

37 $9\left(\frac{9 g 73)}{-}\right.$
$\begin{aligned} 2012 \rightarrow M-W & \rightarrow 41^{\circ} \mathrm{C} \\ T-T & \rightarrow 430 \mathrm{C}\end{aligned}$

$$
T \longrightarrow 15 \%>M
$$

15% of 41

STR

$$
\begin{aligned}
& \frac{M+T+\omega}{3}=41 \\
& \frac{T+\omega+T h}{3}=43 \\
& M+X+\omega Y=123 \\
& X+\omega+T h=129 . \\
& T h-m=6 \\
& T h=1.15 M
\end{aligned}
$$

2 The average weight of 25 students was $42 \mathrm{kg's}$. Two new student having weight 54 and 66 kg joins the class. What's the mew average.

301

$$
\begin{aligned}
& \frac{\text { sum }}{N}=\frac{}{x} \leftarrow \text { average } \\
& \text { No. }
\end{aligned}
$$

* Seating Arrangament

(1) equal pouts
(4) $\left[\begin{array}{l}A C B \\ B C A\end{array}\right]$
(3) $R \rightarrow$ Immediate Right.
(5) $\begin{aligned} & (m n) \\ & (n m)\end{aligned}$
$L \rightarrow$ Immediate left.
(6) mup
(2)@centre
n

n is 2 placesright of m 。

$$
r \text { is } \rightarrow i \text { left } \rightarrow 1-0
$$

- 2 -

T(4)r (5) P @

$$
\text { (6) } w \text { (a) }
$$

$$
\begin{aligned}
& \text { or }\left[\begin{array}{l}
Q \omega T
\end{array}\right], Q^{\infty} \leftrightarrow v \\
& \overrightarrow{T P}, P \leftrightarrow R
\end{aligned}
$$

$$
\left[\begin{array}{ll}
R & S \\
S & R
\end{array}\right]>
$$

MOHIT CHOUKSEY
(9)

$$
\begin{aligned}
& a \\
& b \\
& a v
\end{aligned}
$$

SIR

$$
[\widehat{G D B}][\quad E-A-D
$$

* BLOOD RELATIONS

There are 5 Rules:-
(1) Draw family Hierarchy Tree
(2) keep on making genders
(3) Relations hip
(4) $A+\stackrel{\text { wife }}{\rightleftarrows} M$ -
(5) doit Assume donn Names $>$
here gender is
not knower
Daugurel या लड़का

Either Nephew or Niece (D with s^{-})
or
$\frac{C \cdot B \cdot D}{C_{\text {and }}+b e}$

(c)

$$
B \text { (Mother) }
$$

QL

Q1 Sir

$$
\int_{A \times B^{2}}^{\text {sister }}
$$

$Q 9$

(9) (1) (k)

(10)

(ii)

(PT) Rorothel hy
categeries 6

Analytical Reasoning

 Pabb
$D^{S} \xrightarrow{\text { support }}$ Finonce
$E, F \rightarrow$ malketting
$F \underset{\text { suppost }}{\underset{\text { operations }}{\underset{\text { suppost }}{ }} \underset{\sim}{c}} C E$

mair
(3) cv

categories here are only 2 SIR co-crdinat support

[3people - Co-ordinate - Fin]
(4) sing
(5) A \& (a) P
(4) operat (a) $>$
(3) ch^{2}

K
E mikg
MOHIT CHOUKSE

(6) Pqb?

7books
please write in short

- $\left\{\begin{array}{l}\text { (1) Socio. } \\ \text { (2) Eviuc. } \\ \text { (3) Acc. }\end{array}\right.$
(4) $<$ Engush
(5) Ero
(6) ssycho
(7) Hindi
(c)
'Rules (घयान दें कपया) :-

Ng 10 sgirls

1
$P>R$
$P>M$
$N>P$

(8)
(b) $\rightarrow R>M$
(h) $N>P$

SIR Solutions
$3-(A)<K<-$

$$
P>R \quad N \in P>M
$$

$$
P>M
$$

$$
R>M
$$

(d) $7 \sqrt{r}$
$N>P$
$K<R$
$R \& M=R=M$
$R>N$

$$
(k) \angle R=M>N^{2}>
$$

$$
\begin{aligned}
& A<B \\
& C<D \\
& B<C \text { D } \\
& A>E \text {, }
\end{aligned}
$$

$$
N>R=M>K>P
$$

(11)

$$
\left(\begin{array}{l}
q \\
1 \\
p \\
T \\
w
\end{array}\right)
$$

(20) to (22)

$$
\begin{aligned}
& A K S_{1} R^{r} N \\
& R \underline{Y}^{\omega^{y} \omega} \underline{a}^{\text {Br }} \\
& R_{*}^{r} \stackrel{r}{P} S^{r} \omega_{*}^{*} \\
& \text { K } \rightarrow S \rightarrow Y \\
& \underline{S} \longrightarrow \underline{T} \longrightarrow>R_{*} \&<\omega^{*} \\
& N \rightarrow P \rightarrow Y B \& Y^{Y} \\
& A \rightarrow \omega^{-} \\
& R \rightarrow \infty \text { Yor } G>
\end{aligned}
$$

Amar	Red	Yellow	Blue	whire	Green	
Kap						
Sas						
Roh						
Nag						

(d)

(23) $R \rightarrow$ Blue
(24) Kapil \rightarrow cont
be deternined. r

- Q44 \rightarrow (hate $\dot{\text { - }}$)

$A \longrightarrow$ even $B \rightarrow$ odd

Eswar doesnot live on floor number Bhola.

Dout tabulate.

Bullshit
(b)
(50)

4 childien

sir SOM $<$ Ria $)^{2}$ shiv (or) Riaz
(a) ${ }^{5}$

$$
P Q R S T U
$$

	H	P	D	T	F
P					
Q					
R					
S					
T					
U					

dout Tabulate thedata
(a) R-Defence
(b) \longleftarrow Ans
(d) $>R$-Telecom
(c) $S \& U$ cant be together

Q161 Pg 88

MOHIT CHOUKSEY
(16) \sin
(d)

Lettering

- (Q) $C A T=$

(1B) $\quad A B K: V: B C D:$ \qquad
(c)
 \qquad \therefore (LNNAAN TOTO
(b)
(S) \rightarrow

SIR (5)

$$
\begin{array}{rl}
A B & =E \\
1^{2}+2^{2} & 5 \\
C D & =y \\
3^{2}+4^{2} & =25
\end{array}
$$

(12)

$$
\begin{aligned}
& \quad \overrightarrow{C A R P T:} \overrightarrow{T C} \overrightarrow{E A} \overrightarrow{P R} \\
& \therefore \overrightarrow{T C} \overrightarrow{E A} \overrightarrow{P R} \\
& \overrightarrow{N A T I O N A L}: \overrightarrow{L N A A} \overrightarrow{N T O I}
\end{aligned}
$$

MOHIT CHOUKSEY

MOHIT CHOUKSEY
Q172 $=\frac{x \times x / 2}{2}$
Q163 $L \uparrow \quad N \downarrow \rightarrow e^{x}$.

$$
\begin{aligned}
& r 100 \rightarrow \frac{80^{2}}{} \\
& \checkmark 10000 \rightarrow 40^{2}
\end{aligned}
$$

$$
y=e^{a x} \left\lvert\, \begin{aligned}
y & =k a^{x} \\
\frac{k a^{80}}{a^{40}} & =\frac{100}{1000} \\
a^{40} & =y / 100
\end{aligned}\right.
$$

MOHIT CHOUKSEY

(169) $\frac{x}{100} y+\frac{y}{100} x$
(2xy
2% of $x y$
(157) $(\ln x, y)$

(318)

$$
\begin{aligned}
& (Y 18)=m\left(x-x_{1}\right) \quad\left(x_{1}\right) \\
& (Y-0)=m(x-1) \\
& (Y-0)=-.02 \cdot(x-1) \\
& Y=\frac{-2}{100}(x-1) \\
& Y=\frac{-2}{100}(\ln 5-.1)
\end{aligned}
$$

MOHIT CHOUKSEY
$1(156$

$$
\begin{aligned}
& 3 x+2 y=14 \\
& 2 x-3 y=5
\end{aligned}
$$

$$
2 x-3 y=5
$$

$$
\frac{1}{2} \times \frac{14}{3} \times 7-\underbrace{\frac{1}{2}\left(\frac{14}{3}-\frac{5}{2}\right)} 1
$$

$$
\begin{array}{l|l}
x=0 & y=0 \\
y=-5 / 3 & x=5 / 2.5
\end{array}
$$

$$
y=-5 / 3 \mid x=k / 2
$$

$$
\frac{98}{6}-\frac{13}{12}
$$

$A s+A_{R} \longrightarrow \min m$.
SR

$$
\begin{array}{l|l}
4 x+6 l=340 & A=x^{2}+2 l^{2} \\
{\left[l=\frac{340-4 x}{6}\right]} & A=x^{2}+\left(\frac{340-4 x}{6}\right)^{2} .
\end{array}
$$

(141)

$$
50 \% \leftarrow \text { prove } T B \rightarrow \text { infertion }
$$

$$
30 \% \longleftarrow \text { infected } \longrightarrow \text { develops the diseape. }
$$

(c)
(146) S, M, E, F

$$
\begin{aligned}
M \longrightarrow 2 Y & \rightarrow 1 / 2 E \\
S, M & \rightarrow 6 \mathrm{hs} \\
E_{1} F & \rightarrow 12 \mathrm{hr}
\end{aligned}
$$

MOHIT CHOUKSEY

- $\widehat{2135 ~ Q 132 Q 138}$

$$
\begin{array}{ll}
\frac{1}{2} \times U T \times R T+\frac{1}{2} U T \times T Q+\frac{1}{2} \times P S \times Q T \\
\frac{1}{2} U T(R T+Q T)+\frac{1}{2} P S(Q T) & \frac{1}{2} \underbrace{Q T \times Q S}=20 \\
\frac{1}{2} \frac{U T}{Q Q X} Q\left(\frac{R T}{Q T}+1\right)+\frac{1}{2} \frac{P S}{Q S}(Q T \times Q S) & 12=\sqrt{5^{2+b^{2}}} \\
\frac{1}{2} U T Q T(5 / 2+1)+\frac{1}{2} 3 \underbrace{Q T \times Q S}_{4020}) & 1-5^{2}=
\end{array}
$$

$$
\frac{1}{2}(10)(7 / 2)+60
$$

$$
\frac{1}{7} \frac{U T}{Q S} \times(Q \times Q 5)^{165} \frac{7}{2}+60
$$

$$
\frac{U T}{Q S} 35+60
$$

(38)

$$
r=30 \mathrm{~cm}
$$

$$
\begin{array}{r}
\text { Remaining area }=0.9 \times \pi(30)^{2}=\begin{array}{l}
\text { Lateral } \\
\\
\text { suffare } a
\end{array} ~
\end{array}
$$ of the corve

(l)

$$
\begin{aligned}
& h^{2}+27^{2}=30^{2} \\
& h=\sqrt{30^{2}-27^{2}} \quad \frac{R}{h}=\frac{27}{13.076} \\
& h=13.076
\end{aligned}
$$

*

$$
\begin{aligned}
& P\left(x_{1}, y_{1}\right) \\
& Q\left(x_{2}, y_{2}\right)
\end{aligned}
$$

$R\left(x_{3}, y_{3}\right)$
$-4 \leq x \leq 5$

$$
-6 \leq y \leq 16
$$

MOHIT CHOUKSEY

120

$$
\begin{aligned}
& a^{2}+b^{2}+c^{2}=1 \quad a b+b c+a c \\
& (a+b+c)^{2}=\underbrace{a^{2}+b^{2}+c^{2}}_{1+2(a b+b c+c a)}+2 a b+2 b+2 c a . \\
& 1+2 \\
& (a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right)=2(a b+b c+c a) \\
& \rightarrow+v e / 0
\end{aligned}
$$

But..

122

SIR
(6) 5^{2} (4)

$$
\begin{aligned}
& 152 \\
& 2 \times \frac{6}{3} 212 \\
& 3 \times \frac{9}{9} 24^{2} \\
& 4 \times \frac{36}{36} 41
\end{aligned}
$$

118

$$
\begin{aligned}
& M \rightarrow M \\
& P \rightarrow P \\
& C \rightarrow C
\end{aligned}
$$

$$
\begin{aligned}
p+m+c & =27 / 20 \\
p+m+c & =13 / 20 \\
p \times m \times c & =1 / 10
\end{aligned}
$$

$75 \% \rightarrow$ atheart one
so $\%$ atheart two
$40 \% \rightarrow$ exaltly two

SIR

$$
\delta=10 \% \frac{1}{10}
$$

(2)

$$
m+p+c=\frac{13}{20}=\frac{65}{100}=65 \%>\lll 75 \%
$$

$$
\begin{aligned}
& m+p+C=\frac{135}{100}=\frac{27}{20} \\
& R+2 B+3 \delta \\
& 25+2(40)+3(10)=135
\end{aligned}
$$

(112)

113 only read h

$$
\operatorname{rem}\left(\frac{p \times q}{r \times s}\right) \text { if }(p \times q)>(r \times s)
$$

SIR

$$
\begin{aligned}
h= & \operatorname{Re}\left(\frac{7 \times 3}{5 \times 2}\right)=1 \\
& f(g(1,4) 6,8) \\
& f(1,4,6,8) g(1,4,6,8) \\
& \frac{\max (p, q, r, s)}{\max (p, q, r, s)} \\
& 8 \times(1)=8
\end{aligned}
$$

112

MOHIT CHOUKSEY
-112

$$
\begin{aligned}
& \frac{h}{a}=\sin c \\
& h=a \sin c \\
& \frac{1}{2} \times b \times(h)=\frac{1}{2} \times a b h c \\
& \frac{1}{2} \times q P s \sin 60^{\circ}+1 / 2 r \sin 60^{\circ} \\
& 0=\frac{1}{2} q l \sin \left(120^{\circ}\right) \\
& p s(q+l)=r q
\end{aligned}
$$

8

MOHIT CHOUKSEY

89

Car	74
Sc	50
Both	106
None	70

$$
\left[\frac{74+70}{300}\right] \times 100
$$

88

$$
\frac{D \rightarrow 10 \% \rightarrow T . F}{\binom{100 \times 2}{\text { 2 }} 5=1000} 100 \frac{-50}{15}
$$

1 Ticket $\rightarrow 85 /=$

$$
(85 \times 2) \times 5=850
$$

$76 \xrightarrow{700 B} 4 \mathrm{~B}$

$$
R \longrightarrow \quad 1 B \rightarrow \text { defective }
$$

SIR

$$
\begin{aligned}
& T=100 \\
& D=5 \\
& D=95
\end{aligned}
$$

(73) population

66 ${ }^{Q}[\mathrm{HH}]$ [HT$]$ [TH]

$$
\frac{\frac{1}{2} \times \frac{1}{2}}{[1 / 2 \times 1+1 / 2 \times 1 / 2]}=\frac{1 / 4}{3 / 4}=1 / 3
$$

